Today's highly volatile production environments call for adaptive and rapidly responding production systems that can adjust to the required changes in processing functions, production capacity and dispatching of orders. There is a desire to support such system adaptation and reconfiguration with computer-aided decision support systems. In order to bring automation to reconfiguration decision making in a multi-vendor resource environment, a common formal resource model, representing the functionalities and constraints of the resources, is required. This paper presents the systematic development process of an OWL-based manufacturing resource capability ontology (MaRCO), which has been developed to describe the capabilities of manufacturing resources. As opposed to other existing resource description models, MaRCO supports the representation and automatic inference of combined capabilities from the representation of the simple capabilities of co-operating resources. Resource vendors may utilize MaRCO to describe the functionality of their offerings in a comparable manner, while the system integrators and end users may use these descriptions for the fast identification of candidate resources and resource combinations for a specific production need. This article presents the step-by-step development process of the ontology by following the five phases of the ontology engineering methodology: feasibility study, kickoff, refinement, evaluation, and usage and evolution. Furthermore, it provides details of the model's content and structure.
There exist a need for more cost effective and adaptable production solutions for miniaturised products. One promising approach to meet the market demands bases on so called desktop factories. They inherently offer a sustainable and energy efficient solution for the assembly of meso-and microsized parts. The realisation of adaptable automation solutions based on desktop factories under the paradigm of Evolvable Production Systems leads to the question of downscaling the implementation following the EPS guidelines. This paper describes some of the requirements and boundary conditions which occur in that process. The obligation to have an in-depth knowledge and understanding of all aspects along the production process is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.