Visual localization techniques often comprise a hierarchical localization pipeline, with a visual place recognition module used as a coarse localizer to initialize a pose refinement stage. While improving the pose refinement step has been the focus of much recent research, most work on the coarse localization stage has focused on improvements like increased invariance to appearance change, without improving what can be loose error tolerances. In this letter, we propose two methods which adapt image retrieval techniques used for visual place recognition to the Bayesian state estimation formulation for localization. We demonstrate significant improvements to the localization accuracy of the coarse localization stage using our methods, whilst retaining state-of-the-art performance under severe appearance change. Using extensive experimentation on the Oxford RobotCar dataset, results show that our approach outperforms comparable state-of-the-art methods in terms of precision-recall performance for localizing image sequences. In addition, our proposed methods provides the flexibility to contextually scale localization latency in order to achieve these improvements. The improved initial localization estimate opens up the possibility of both improved overall localization performance and modified pose refinement techniques that leverage this improved spatial prior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.