The use of plant growth promoting bacteria (PGPB) as biostimulants favors the increase of crop productivity and the improvement of yield quality. The main objective of the present study was to investigate the effect of the PGPB biostimulants (Azotobacter chroococcum, Bacillus subtilis, Bacillus megatherium and their mixes) and the application method (foliar and soil) on the growth, the physiology, the yield and the quality of maize. The obtained results showed that A. chroococcum treatment increased the chlorophyll content up to 6.1%, the photosynthetic rate up to 18.4% and the transpiration rate up to 34.3%. The highest maize yields were performed by the treatments B. megatherium (244.67 g) and the mix of A. chroococcum and B. subtilis (1:1) (243.67 g) when applied on the soil. The Soil application of the PGPB resulted in increased yield of maize from 5.5 to 13.4% compared to control treatment. Concerning quality characteristics, B. subtilis treatment increased total solids content in harvested maize seeds by 92%, as well as crude fiber content by 46% compared to control. The results confirmed that the use of PGPB could contribute as a new cultivation practice for sustainable growth, productivity and quality of grain crops.
Plant growth promoting bacteria (PGPB) are used as biostimulants to improve the growth and yield as well as the quality of crops. In the present study, nine strains of PGPB and one solid mix consisting of two of them were evaluated on the cultivation of industrial tomato under specific soil and climatic conditions. The results showed that Bacillus licheniformis treatment increased dry weight of the tomato plants by 39%, and the photosynthetic rate was increased by Priestia megaterium 9.9%. The application of Bacillus subtilis, Bacillus amyloliquefaciens, Priestia megaterium, and Bacillus licheniformis increased mean fruit weight per plant 26.78–30.70% compared to that of control. Yield per plant was increased 51.94% with the use of Bacillus licheniformis compared to that of control. The quality of the fruits in nearly every bacteria strain was improved. Bacillus pumilus and the mix of Priestia megaterium and Azotobacter chroococcum (1:1) increased the most total soluble solids in the tomato fruits (4.70o Brix), and Priestia megaterium increased content in lycopene and total carotenoids by 52.8% and 25%, respectively; Bacillus pseudomycoides increased Pectin methylesterase (PME) activity (24.94 units/mL), and Bacillus mojavensis, along with the mix of Priestia megaterium and Azotobacter chroococcum, increased Poligalacturonase (PG) activity the most (30.09 and 32.53 units/mL, respectively). Most of the bacteria strains presented an increased antioxidant activity significantly better that that of the control up to 31.25%. The results of this study confirmed that the use of PGPB as biostimulants can improve the yield and the quality of industrial tomato.
The use of plant growth promoting bacteria (PGPB) is increasingly gaining acceptance from all the stakeholders of the agricultural production. Different strains of PGPB species had been found to have a vast variety of mechanisms of action, while at the same time, affect differently a variety of crops. This study investigated the effectiveness of ten PGPB strains, on sweet corn cultivation under Mediterranean soil and climatic conditions. A field experiment that followed a completely randomized design was conducted at the region of Attica at Oropos. The results indicated that B. mojavensis increased yield by 16%, B. subtilis by 13.8%, B. pumilus by 11.8% and B. pseudomycoides by 9.8% compared to control. In addition, the harvested grains of the plants treated with B. mojavensis, B. subtilis and B. pumilus presented the highest values of protein and fiber content. Moreover, in most of the cases, high values of photosynthetic rate, transpiration rate and stomatal conductance during the cultivation period, resulted in high productivity. Regarding the texture, the size, the sphericity and the ash content of corn grains, it was found that they were not influenced by the application of different treatments of PGPB. The use of certain strains of PGPB, under specific soil and climatic conditions could contribute to better understand which strains are better suited to certain crops.
Using of silage and haylage of forage legumes in ruminant nutrition and promotion of promoting proper forage conservation techniques should be an important strategy in livestock production in our country. Forage legumes are difficult to ensile, so it is necessary to apply the starter culture of selected strains of lactic acid bacteria that support the ensiling process and prevent bacterial butyric fermentation and thus contribute to the preservation and improvement of silage and haylage quality. In this paper, the influence of bacterial inoculant 'Silko for alfalfa' on the quality of silage and haylage of alfalfa in two separate trials is presented. The inoculant is a combination of homofermentative lactic bacteria Lactobacillus plantarum and Pediococcus spp. The first-cut alfalfa in the second year was used for silage and haylage. The silage was examined in mini-silos in the laboratory, and the haylage at the cattle farm where the plant material was cuts were collected in experimental silo bags. The treatments were control (untreated silage, i.e. haylage) and silage, i.e. haylage treated with inoculant 'Silko for alfalfa' (rate of 5 ml t-1 fresh material). The silages were analyzed after 90 days, and haylage after 40. The inoculant 'Silko for alfalfa' has been found to maintain the nutritive value of silage and haylage and to improve their chemical, energy and fermentation parameters relative to the control. Since 'Silko for alfalfa' positively affects the correct lactic acid fermentation of silage and haylage and contributes to a lesser loss of nutritional value and energy it is expected that it can promote a high level of productivity of ruminants, and thus contribute to the growth of profit in livestock production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.