Abstract-This paper introduces a new type of fuzzy inference systems, denoted as dynamic evolving neural-fuzzy inference system (DENFIS), for adaptive online and offline learning, and their application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning, and accommodate new input data, including new features, new classes, etc., through local element tuning. New fuzzy rules are created and updated during the operation of the system. At each time moment, the output of DENFIS is calculated through a fuzzy inference system based on -most activated fuzzy rules which are dynamically chosen from a fuzzy rule set. Two approaches are proposed: 1) dynamic creation of a first-order Takagi-Sugeno-type fuzzy rule set for a DENFIS online model; and 2) creation of a first-order Takagi-Sugeno-type fuzzy rule set, or an expanded high-order one, for a DENFIS offline model. A set of fuzzy rules can be inserted into DENFIS before or during its learning process. Fuzzy rules can also be extracted during or after the learning process. An evolving clustering method (ECM), which is employed in both online and offline DENFIS models, is also introduced. It is demonstrated that DENFIS can effectively learn complex temporal sequences in an adaptive way and outperform some well-known, existing models.Index Terms-Dynamic evolving neural-fuzzy inference system (DENFIS), hybrid systems, online adaptive learning, online clustering, time series prediction.
On-line learning and recognition of spatio-and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as SpikeTiming Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes (which information is explicitly present in input data streams and would be crucial to consider in some tasks) and of the information contained in the timing of the following spikes that is learned by the dynamic synapses as a whole spatio-temporal pattern. The paper is published in Neural Networks, Elsevier, e- AbstractOn-line learning and recognition of spatio-and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant S...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.