Tumour-induced angiogenesis involves growth of new blood vessels from existing vasculature in response to signals induced by the undernourished part of tumour tissue. Due to high costs and ethical issues associated with in vivo experiments, significant efforts have been undertaken to develop computational models and physiologically relevant 3D in vitro assays to study angiogenesis in a highly controllable and accessible manner. Our goal was to utilize existing modelling techniques and apply them to an in vitro environment to model endothelial cell (EC) migration and angiogenesis inside the tubeless microfluidic angiogenesis assay. Here we leverage two continuum models which are implemented using the Method of Lines and discretized in space using the finite difference approximation. The aim was to simulate EC angiogenic response under different VEGF concentrations and investigate microfluidic device geometry as a potential parameter that can accelerate angiogenesis.
Ground Source Heat Pump (GSHP) systems, if improperly designed may lead to overheating or overcooling of the ground. Good designs ensure properly balanced energy storage through adequately sizing ground-loops. Hybrid systems combine conventional Heating, Ventilating, and Air Conditioning (HVAC) with GSHPs in order to significantly reduce the high installation costs of GSHPs. The hybrid systems are designed in such a way that GSHPs provide the base building energy demands while the conventional HVAC is used only during the peak hours. In general, all buildings can be divided into two main categories: cooling dominant and heating dominant. If a building is cooling dominant, ground temperature increases with time and in heating dominant cases it decreases. A severe ground temperature increase/decrease is referred to as 'ground fouling' because it can render the GSHP inoperable, as temperature differences are required to maintain controlled heat flow. This paper compares long-term operation of hybrid and nonhybrid GSHP systems in order to investigate the effectiveness of hybridization at alleviating 'ground fouling'. A homespun 2D finite-volume model is proposed to study heat transfer in ground coupled heat pump systems and is verified against an analytical solution as well as experimental data. Through simulation of different building types, it is demonstrated that hybridization has potential to reduce 'ground fouling' but only in limited cases for which a large portion of the energy demands is being met by the conventional HVAC.
Ground Source Heat Pump (GSHP) systems, if improperly designed may lead to overheating or overcooling of the ground. Good designs ensure properly balanced energy storage through adequately sizing ground-loops. Hybrid systems combine conventional Heating, Ventilating, and Air Conditioning (HVAC) with GSHPs in order to significantly reduce the high installation costs of GSHPs. The hybrid systems are designed in such a way that GSHPs provide the base building energy demands while the conventional HVAC is used only during the peak hours. In general, all buildings can be divided into two main categories: cooling dominant and heating dominant. If a building is cooling dominant, ground temperature increases with time and in heating dominant cases it decreases. A severe ground temperature increase/decrease is referred to as ‘ground fouling’ because it can render the GSHP inoperable, as temperature differences are required to maintain controlled heat flow. This paper compares long-term operation of hybrid and nonhybrid GSHP systems in order to investigate the effectiveness of hybridization at alleviating ‘ground fouling’. A homespun 2D finite-volume model is proposed to study heat transfer in ground coupled heat pump systems and is verified against an analytical solution as well as experimental data. Through simulation of different building types, it is demonstrated that hybridization has potential to reduce ‘ground fouling’ but only in limited cases for which a large portion of the energy demands is being met by the conventional HVAC.
Ground Source Heat Pump (GSHP) systems, if improperly designed may lead to overheating or overcooling of the ground. Good designs ensure properly balanced energy storage through adequately sizing ground-loops. Hybrid systems combine conventional Heating, Ventilating, and Air Conditioning (HVAC) with GSHPs in order to significantly reduce the high installation costs of GSHPs. The hybrid systems are designed in such a way that GSHPs provide the base building energy demands while the conventional HVAC is used only during the peak hours. In general, all buildings can be divided into two main categories: cooling dominant and heating dominant. If a building is cooling dominant, ground temperature increases with time and in heating dominant cases it decreases. A severe ground temperature increase/decrease is referred to as ‘ground fouling’ because it can render the GSHP inoperable, as temperature differences are required to maintain controlled heat flow. This paper compares long-term operation of hybrid and nonhybrid GSHP systems in order to investigate the effectiveness of hybridization at alleviating ‘ground fouling’. A homespun 2D finite-volume model is proposed to study heat transfer in ground coupled heat pump systems and is verified against an analytical solution as well as experimental data. Through simulation of different building types, it is demonstrated that hybridization has potential to reduce ‘ground fouling’ but only in limited cases for which a large portion of the energy demands is being met by the conventional HVAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.