Background and purpose: Dryocosmus kuriphilus is considered as one of the major pests of sweet chestnut and the effective method of controlling its populations and damage is the biological control with its introduced
Torymus sinensis Kamijo (Hymenoptera, Torymidae), a classical biocontrol agent of chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera, Cynipidae), was released in Croatia, Slovenia and Hungary in 2015. Following the introduction, the research of parasitism rates and population genetic indices on 40 different sites was performed to monitor and evaluate the success of establishment. The observed parasitism rates were unexpectedly high and negatively correlated with the distance from westernmost locality, while population genetic indices showed that populations of T. sinensis did not suffer from bottleneck-induced founder effect phenomenon. Moreover, lack of genetic differentiation demonstrates that all populations share similar genetic structure, which could be shaped only by high levels of gene flow. We conclude that T. sinensis established viable and genetically diverse populations and successfully spread naturally from Italy across Slovenia to Croatia and Hungary.
Background and Purpose: Orthotomicus erosus, Mediterranean pine engraver, is widely distributed across the Mediterranean and southern Europe, Asia and North Africa. It is considered as secondary pest found on recently dead or felled trees, but can also attack weakened living trees. In high population levels this species can attack healthy trees and cause their dieback. Severe outbreaks occur after dry periods, or after fire in adjoining stands in warmer parts of the Mediterranean region, while this scenario has never happened in Croatia up to now. Bark beetles are important forest pests which have already been researched and discussed in relation to climate change, indicating that the predicted increase in temperature would lead to higher survival rates and faster development, thus directly influencing their population dynamics. Increase in temperature may stimulate changes in insects’ rate of development, voltinism, population density, size, genetic composition, extent of host plant exploitation, longitudinal and latitudinal distribution. Since climate conditions might have changed in the last few years as predicted in the Mediterranean region, the aim of our research is to document the first outbreak with high population levels of O. erosus in Croatia. Materials and Methods: The extent of dieback was evaluated by counting trees with dieback symptoms on diagonal transects plotted through each of 33 forest management sections of Marjan Forest Park (Split). Trunk sections from several trees with early stage symptoms were collected for further laboratory analysis, which consisted of incubation phase and subsequent morphological identification. During regular yearly surveys in forests of Croatia, the pest was observed on several sites and damages were recorded for both years 2017 and 2018. The records were entered into a map using QGIS version 3.2.1-Bonn. Spatial data was downloaded from DIVA-GIS server. Monitoring efforts were initiated in affected areas where 13 flight barrier pheromone traps (Theyson®) equipped with pheromone lure Erosowit® (Witasek, Austria) were set-up in late March in state-owned and privately owned forests across Dalmatia. Catches in the traps were collected and O. erosus adults were counted on a weekly basis in order to identify the abundance of the pest in monitored sites, as well as to obtain the first information about population dynamics and to assess voltinism. Results: On-site survey and the evaluation of dieback extent included sampling of 5% of all trees in Marjan Forest Park ,and the results showed that 23% of all trees in the forest park were affected by dieback symptoms. Visual examination of trunks, branches and bark showed symptoms of bark beetle infestation, while preliminary on-site examination of the observed adults pointed out to O. erosus. After two weeks in controlled conditions, bark beetle adults started to emerge from trunk sections which were placed in several mesh cages for incubation. Morphological identification by using stereomicroscope and the key for European bark beetles resulted in identification of O. erosus species. Over the course of the year 2017 one more site was reported to be infested with O. erosus, and eight additional sites were reported over the course of year 2018. In total, 446 ha were reported as infested, varying in intensity, in several different management units of state-owned and privately owned forests. The total number of trapped beetles in pheromone traps varied largely among sites. Our data indicate that several generations (at least 5 generations per year) were present in the year 2018. Conclusions: Sudden surge in observed damages, as well as the number of beetles trapped during monitoring, in years 2017 and 2018 throughout Aleppo pine forests in Dalmatia are the first record of O. erosus outbreak in Croatia. O. erosus is native to Croatia and so far it has been considered only as a minor pest whose outbreaks have never been recorded. Drought intensity and frequency and aridification trends in the research area (Dalmatia, Croatia) cause cumulative stress to trees and have increased O. erosus occurrence. O. erosus is expected to exhibit increased voltinism, better overwintering performance and earlier spring flights. Our first results confirm this epidemic stage of O. erosus with high abundances in Dalmatia in 2018 and at least 5 generations per year, which alter the population level of this pest. Finally, with high dispersal abilities of O. erosus through active flight and easy transportation with infested material (logs and branches with bark), O. erosus has the potential to become an important forest pest in Croatia. Thus, extensive studies on its biology, ecology, natural enemies and interaction with ophiostomatoid fungal species are needed in order to predict further spread and suggest viable and effective management measures.
International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.