Shallots are a valuable minor Allium crop, and are propagated vegetatively and maintained in home gardens across generations along the Croatian coast and island areas. Shallot landraces growing along the Croatian coast fall into three genotypes: Allium cepa Aggregatum group (2n = 2x = 16), A. × proliferum (Moench) Schard. (2n = 2x = 16), and A. × cornutum Clementi ex Vis. (2n = 3x = 24), among which A. × cornutum is the most widespread. The aim of this study was to differentiate shallot accessions collected from local farmers using morphological markers. Also, the chemical composition including phenolic content, phenolic profile, total antioxidant capacity, and mineral composition, of shallot accessions was compared with that of the local landraces of common onion, and with market available shallot and common onion cultivars. Based on morphological observations and using multivariate classification, shallot landraces were classified into three distinct groups. Properties, based on which A. × cornutum can be differentiated from A. cepa Aggregatum and A. × proliferum, are stamen morphology, stamen length, leaf and scape vegetative properties, number of bulbs in cluster, cluster mass, and bulb diameter. Flower diameter and flower pedicel length differentiate A. × cornutum and A. × proliferum from A. cepa Aggregatum. Significant variability was observed in the biochemical profiles across tested accessions. Compared with the commercial common onion cultivars, local shallot accessions have higher bulb N, P, and K content. The major phenolic compounds identified in shallots were quercetin-4′-glucoside and quercetin-3,4′-diglucoside. Additionally, several other minor phenolic compounds were also identified. Morphological and biochemical profiles were evaluated using Partial Least Square (PLS) analysis. Specific morphological traits and biochemical markers for possible species identification are proposed.
In order to investigate the potential of various olive cultivars and leaf sampling times for phytochemical farming practice in Croatia, phenolic and mineral composition was determined in olive leaves of four Croatian cultivars and Italian cultivar Leccino collected at three occasions, in October 2017, January 2018, and March 2018. Istarska bjelica turned out to have the largest phytochemical potential among the investigated cultivars due to steady high oleuropein concentrations found in its leaves. The concentration of main phenolic components in Istarska bjelica leaves changed only slightly during the sampling period, suggesting the possibility of its higher capability for low air temperatures stress resistance and different metabolic response compared to the other studied cultivars. Low air temperatures increased the oleuropein level and antioxidant activity in leaves of Leccino, Oblica, Levantinka, and Drobnica cultivars, which may be of crucial phytochemical farming interest. Each of the investigated olive cultivars was characterized by a specific leaf mineral nutrient composition, which could have had a specific role in their interplay with phenols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.