a b s t r a c tPrivacy is one of the most important social and political issues in our information society, characterized by a growing range of enabling and supporting technologies and services. Amongst these are communications, multimedia, biometrics, big data, cloud computing, data mining, internet, social networks, and audio-video surveillance. Each of these can potentially provide the means for privacy intrusion. Deidentification is one of the main approaches to privacy protection in multimedia contents (text, still images, audio and video sequences and their combinations). It is a process for concealing or removing personal identifiers, or replacing them by surrogate personal identifiers in personal information in order to prevent the disclosure and use of data for purposes unrelated to the purpose for which the information was originally obtained. Based on the proposed taxonomy inspired by the Safe Harbour approach, the personal identifiers, i.e., the personal identifiable information, are classified as non-biometric, physiological and behavioural biometric, and soft biometric identifiers. In order to protect the privacy of an individual, all of the above identifiers will have to be de-identified in multimedia content. This paper presents a review of the concepts of privacy and the linkage among privacy, privacy protection, and the methods and technologies designed specifically for privacy protection in multimedia contents. The study provides an overview of de-identification approaches for non-biometric identifiers (text, hairstyle, dressing style, license plates), as well as for the physiological (face, fingerprint, iris, ear), behavioural (voice, gait, gesture) and soft-biometric (body silhouette, gender, age, race, tattoo) identifiers in multimedia documents.
This paper develops a novel face recognition technique called Complete Gabor Fisher Classifier (CGFC). Different from existing techniques that use Gabor filters for deriving the Gabor face representation, the proposed approach does not rely solely on Gabor magnitude information but effectively uses features computed based on Gabor phase information as well. It represents one of the few successful attempts found in the literature of combining Gabor magnitude and phase information for robust face recognition. The novelty of the proposed CGFC technique comes from (1) the introduction of a Gabor phase-based face representation and (2) the combination of the recognition technique using the proposed representation with classical Gabor magnitude-based methods into a unified framework. The proposed face recognition framework is assessed in a series of face verification and identification experiments performed on the XM2VTS, Extended YaleB, FERET, and AR databases. The results of the assessment suggest that the proposed technique clearly outperforms state-of-the-art face recognition techniques from the literature and that its performance is almost unaffected by the presence of partial occlusions of the facial area, changes in facial expression, or severe illumination changes.
The paper presents a novel method for the extraction of facial features based on the Gabor-wavelet representation of face images and the kernel partial-least-squares discrimination (KPLSD) algorithm. The proposed feature-extraction method, called the Gabor-based kernel partial-least-squares discrimination (GKPLSD), is performed in two consecutive steps. In the first step a set of forty Gabor wavelets is used to extract discriminative and robust facial features, while in the second step the kernel partial-least-squares discrimination technique is used to reduce the dimensionality of the Gabor feature vector and to further enhance its discriminatory power. For optimal performance, the KPLSD-based transformation is implemented using the recently proposed fractional-power-polynomial models. The experimental results based on the XM2VTS and ORL databases show that the GKPLSD approach outperforms feature-extraction methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA) or generalized discriminant analysis (GDA) as well as combinations of these methods with Gabor representations of the face images. Furthermore, as the KPLSD algorithm is derived from the kernel partial-least-squares regression (KPLSR) model it does not suffer from the small-sample-size problem, which is regularly encountered in the field of face recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.