Cationorm® (CN) cationic nanoemulsion was demonstrated to enhance tear film (TF) stability in vivo possibly via effects on tear film lipid layer (TFLL). Therefore the interactions of CN with human meibum (MGS) and TFLL in vitro and in vivo deserve special study. MGS and CN were spread at the air/water interface of a Langmuir surface balance to ensure a range of MGS/CN oil phase ratios: 20/1, 10/1, 5/1, 3/1, 2/1 and 1/1. The films capability to reorganize during dynamic area changes was evaluated via the surface pressure-area compression isotherms and step/relaxation dilatational rheology studies. Films structure was monitored with Brewster angle microscopy. CN/TFLL interactions at the ocular surface were monitored with non-contact specular microscopy. The in vitro studies of MGS/CN layers showed that (i) CN inclusion (at fixed MGS content) increased film elasticity and thickness and that (ii) CN can compensate for moderate meibum deficiency in MGS/CN films. In vivo CN mixed with TFLL in a manner similar to CN/MGS interactions in vitro, and resulted in enhanced thickness of TFLL. In vitro and in vivo data complement each other and facilitated the study of the composition-structure-function relationship that determines the impact of cationic nanoemulsions on TF.
The wettability of silicone hydrogel (SiHy) contact lens (CLs) is crucial for the pre-lens tear film stability throughout the day. Therefore, sessile drop and captive bubble setups were used to study the advancing and receding water contact angles (CA) of four SiHy materials: narafilcon A (TE), senofilcon A (AOD), stenfilcon A (MD), and delefilcon A (DT). TE and AOD have 48% and 38% water content, respectively, and no surface coating. MD (54% water) implements “smart chemistry” with just 4.4% bulk silicone content, while DT has >80% water at its surface. These SiHy were subjected to continuous blink-like air exposure (10 s)/rehydration (1s) cycles for 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, and 16 h. The advancing CA, which measures the rehydration propensity of the CL surface, proved to be the most sensitive parameter to discriminate between the samples. The order of performance for the entire time scale was DT > MD >> AOD ≥ TE. The extended desiccation/rehydration cycling increased the differences between the CA of DT and MD compared to AOD and TE. This suggests that the low Si surface content and the high surface hydration are major determinants of SiHy wettability.
Silicone hydrogels (SiHy), represent composite matrices composed of hydrophobic gas permeable silicone (Si) rich core and a surface enriched with hydrophilic polymer moieties. Their utilization in contact lens design requires number of SiHy properties (hydration, wettability, lubricity) to be optimized for the challenging conditions at the ocular surface. Typical limitations in literature are that (i) these properties are studied in isolation, monitoring only one parameter but not the rest of them, and (ii) measurements are performed with hydrated samples immediately after removal from storage solutions. Here we study the simultaneous evolution of critical material properties (evaporative loss of water, water contact angle, coefficient of friction) of different SiHy subjected to continuous blink-like desiccation/rehydration cycling. SiHy with wetting agents incorporated in their core (narafilcon A, senofilcon A) were particularly susceptible to extended desiccation. Stenfilcon A, a material with only 3% bulk Si content maintained its performance for 4 h of cycling, and delefilcon A (80% surface water content) resisted extended 8 h of desiccation/rehydration runs. Strong correlation exists between the evolution of SiHy wettability and lubricity at ≥4 h of blink-like cycling. Understanding the interplay between SiHy properties bears insights for knowledge based design of novel ophthalmic materials.
Meibomian gland disease is associated with quantitative or qualitative deficiencies of meibum (MGS) that result in tear film instability. Thus, there is great demand for ophthalmic nanoemulsions that can replenish MGS and recover its performance at the air/tear surface. Rohto Dry Aid (RDA) utilizes TEARSHIELD TECHNOLOGYTM implementing a complex oil phase of non-polar and polar lipid-like molecules. Therefore, the interactions of RDA with MGS surface films deserve further study as they may provide valuable insights (i) into the mechanisms behind the nanoemulsion therapeutic action and (ii) for the design of novel ophthalmic formulations. Pseudobinary meibum/RDA films were formed at the air–water surface of the Langmuir trough. Surface pressure-area isocycles and stress relaxations were employed to probe the layer (i) reorganization upon cycling and (ii) dilatational elasticity, respectively. Film morphology was accessed by Brewster angle microscopy and the spreading properties of RDA-supplemented meibum were also probed. The diverse ingredients of the nanoemulsion oil phase complemented the non-polar and polar lipid constituents of the meibomian layers, which resulted in enhanced continuity of the MGS duplex film structure and facilitated the MGS spread and viscoelasticity. Nanoemulsions deserve further study as a potent tool for MGS-oriented therapy for dry eyes.
The modern world is very fast and dynamic. Consumer requirements rise to every commodity part of their everyday life - food, clothing, cosmetics, and medical devices. Eye care and eye health are also part of them. Companies producing contact lenses work daily to improve the safety and comfort of wearing, as well as on the technical characteristics of the material (type of material, wear time, module, Dk / t etc.). Silicon hydrogel contact lenses (SiHy) were introduced almost two decades ago. At that time it was estimated that there are about 70 million contact lenses all over the world. Since then, their number has doubled and a significant majority now have silicone-hydrogel contact lenses, resulting in a steady and noticeable reduction in the number of regular hydrogel lenses. When the first one-day silicon-hydrogel contact lenses were introduced in 2008, they were announced as breakthroughs in technology. When they were introduced to the market, they were presented in spherical, toric and multifocal designs, which led to a significant increase in the use / prescription of silicon-hydrogel daily disposable contact lenses. A survey conducted in 2014 by the International Consortium illustrates this point. Although, according to this study, the use of SiHy contact lenses varies widely across the world. In the United States, Canada, Australia and the United Kingdom, four to six times more patients were fitted with silicone-hydrogel CLs compared to hydrogels in 2014 and in each country, daily disposable SiHy contact lenses were prescribed with a larger frequency compared to daily disposable hydrogel lenses. It is important to make a good fit to ensure and increase the comfort of wearing contact lenses. In addition to some of the standard fitting techniques such as: keratometry and choice of base curve of the lens; size and eccentricity; an assessment of the mobility of a lens placed in the eye - look positions, mobility, push up test, can be added and the wetting of the contact lens. Even in perfect fit, if the lens does not interact well with the tear film, it would lead to complaints and discomfort in the patient. The degree of wetting is determined by the balance between adhesive and cohesive forces acting on the surface of the lens. CLs, which can support full wetting, allow a tight coating of the tear film, a smooth recovery of the tear layer after eyelid opening and good visual acuity. The interaction between CL, eye surface and tear film is vital to their successful fit. It has long been known that both the organic and inorganic components of the tear film and anterior surface of the eye can deposit deposits on the contact lenses. There are various non-invasive methods for assessing the tear film and, above all, the lipid layer. Some of these are Non invasive breakup time (NIBUT) and specular biomicroscopy. In the present work we will look at daily disposable silicone-hydrogel contact lenses that have been tested in vivo for good wetting, stability and good regeneration of the tear film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.