The main goal of this study is determining the influence of surface curvature on 3D scanning accuracy of dental castings. The hypothesis is that 3D scanning errors occur on the geometry (surfaces) of a higher curvature on the dental anatomy. Ten dental castings (five mandibular and five maxillar) were 3D scanned with four different dental 3D scanners. As a reference device Atos Core industrial 3D scanner was used. Using a qualitative-quantitative approach of dividing every tooth in three areas (OSocclusal surface, CSBcrown surface buccal side, CSPcrown surface palatal side) and observing the frequency of maximal deviation for each area a deviation map was obtained, which shows on what area, are the biggest deviations and in which frequency they emerge. In total 160 teeth were analysed. To conclude, 3D scanning errors occur more frequently on the geometry (surfaces) of a higher curvature on the dental anatomy. Future work suggests conducting a full numerical analysis to find a correlation between the accuracy of 3D scanned teeth surface and a surface curvature. Comparing the 3D scanning deviation to the calculated curvature of the surface could unveil which curvature is hard to 3D scan and generates errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.