Hamiltonian systems of hydrodynamic type occur in a wide range of applications including fluid dynamics, the Whitham averaging procedure and the theory of Frobenius manifolds. In 1 + 1 dimensions, the requirement of the integrability of such systems by the generalised hodograph transform implies that integrable Hamiltonians depend on a certain number of arbitrary functions of two variables.On the contrary, in 2 + 1 dimensions the requirement of the integrability by the method of hydrodynamic reductions, which is a natural analogue of the generalised hodograph transform in higher dimensions, leads to finite-dimensional moduli spaces of integrable Hamiltonians. In this paper we classify integrable two-component Hamiltonian systems of hydrodynamic type for all existing classes of differential-geometric Poisson brackets in 2D, establishing a parametrisation of integrable Hamiltonians via elliptic/hypergeometric functions. Our approach is based on the Godunov-type representation of Hamiltonian systems, and utilises a novel construction of Godunov's systems in terms of generalised hypergeometric functions.MSC: 35L40, 35L65, 37K10.
We present a detailed numerical study of various blow‐up issues in the context of the focusing Davey–Stewartson II equation. To this end, we study Gaussian initial data and perturbations of the lump and the explicit blow‐up solution due to Ozawa. Based on the numerical results it is conjectured that the blow‐up in all cases is self‐similar, and that the time‐dependent scaling behaves as in the Ozawa solution and not as in the stable blow‐up of standard L2 critical nonlinear Schrödinger equation. The blow‐up profile is given by a dynamically rescaled lump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.