Dementia of the Alzheimer type (DAT) is associated with the accumulation of beta-amyloid (A beta) peptides derived from beta-amyloid precursor protein (APP). Goldstein and coworkers have suggested that APP acts as a cargo receptor connecting post-Golgi vesicles and motor proteins. Sisodia and colleagues have suggested that APP is a passive passenger within the vesicles. Both views predict that one should be able to visualize colocalizations of APP with microtubules, the object of the present investigation. To avoid possible artifacts created by APP overexpression, we studied endogenous expression in a human neuroblastoma cell line (SK-N-SH). Using high resolution fluorescence microscopy and antibodies specific for the amino termini of APP and A beta sequences, we found that endogenous APP and A beta peptide immunoreactivities colocalized with microtubules in interphase cells. Disruption of microtubules, followed by fixation at various time points during repolymerization, allowed us to observe the sequence and timing of these colocalizations in interphase cells. In addition, to our surprise, we found that A beta immunoreactivities colocalize with the mitotic spindle, a bundle of specialized microtubules. Because of the condensed cytoplasm found in neurons, we suggest that SK-N-SH cells might be a more convenient experimental system for exploring the mechanisms that underlie these protein localizations and the pathology that might result from altered APP protein structure and function.
Commonly used general anesthetics can have adverse effects on the developing brain by triggering apoptotic neurodegeneration, as has been documented in the rat. The rational of our study was to examine the molecular mechanisms that contribute to the apoptotic action of propofol anesthesia in the brain of 7-day-old (P7) rats. The down-regulation of nerve growth factor (NGF) mRNA and protein expression in the cortex and thalamus at defined time points between 1 and 24 h after the propofol treatment, as well as a decrease of phosphorylated Akt were observed. The extrinsic apoptotic pathway was induced by over-expression of tumor necrosis factor (TNF) which led to the activation of caspase-3 in both examined structures. Neurodegeneration was confirmed by Fluoro-Jade B staining. Our findings provide direct experimental evidence that the anesthetic dose (25 mg/kg) of propofol induces complex changes that are accompanied by cell death in the cortex and thalamus of the developing rat brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.