A molecular-level understanding of the function of a protein requires knowledge of both its structural and dynamic properties. NMR spectroscopy allows the measurement of generalized order parameters that provide an atomistic description of picosecond and nanosecond fluctuations in protein structure. Molecular dynamics (MD) simulation provides a complementary approach to the study of protein dynamics on similar time scales. Comparisons between NMR spectroscopy and MD simulations can be used to interpret experimental results and to improve the quality of simulation-related force fields and integration methods. However, apparent systematic discrepancies between order parameters extracted from simulations and experiments are common, particularly for elements of noncanonical secondary structure. In this paper, results from a 1.2 µs explicit solvent MD simulation of the protein ubiquitin are compared with previously determined backbone order parameters derived from NMR relaxation experiments [Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax, A. J. Am. Chem. Soc. 1995, 117, 12562-12566]. The simulation reveals fluctuations in three loop regions that occur on time scales comparable to or longer than that of the overall rotational diffusion of ubiquitin and whose effects would not be apparent in experimentally derived order parameters. A coupled analysis of internal and overall motion yields simulated order parameters substantially closer to the experimentally determined values than is the case for a conventional analysis of internal motion alone. Improved agreement between simulation and experiment also is encouraging from the viewpoint of assessing the accuracy of long MD simulations.
The accurate characterization of the structure and dynamics of proteins in disordered states is a difficult problem at the frontier of structural biology whose solution promises to further our understanding of protein folding and intrinsically disordered proteins. Molecular dynamics (MD) simulations have added considerably to our understanding of folded proteins, but the accuracy with which the force fields used in such simulations can describe disordered proteins is unclear. In this work, using a modern force field, we performed a 200 μs unrestrained MD simulation of the acid-unfolded state of an experimentally well-characterized protein, ACBP, to explore the extent to which state-of-the-art simulation can describe the structural and dynamical features of a disordered protein. By comparing the simulation results with the results of NMR experiments, we demonstrate that the simulation successfully captures important aspects of both the local and global structure. Our simulation was ~2 orders of magnitude longer than those in previous studies of unfolded proteins, a length sufficient to observe repeated formation and breaking of helical structure, which we found to occur on a multimicrosecond time scale. We observed one structural feature that formed but did not break during the simulation, highlighting the difficulty in sampling disordered states. Overall, however, our simulation results are in reasonable agreement with the experimental data, demonstrating that MD simulations can already be useful in describing disordered proteins. Finally, our direct calculation of certain NMR observables from the simulation provides new insight into the general relationship between structural features of disordered proteins and experimental NMR relaxation properties.
Changes in residual conformational entropy of proteins can be significant components of the thermodynamics of folding and binding. Nuclear magnetic resonance (NMR) spin relaxation is the only experimental technique capable of probing local protein entropy, by inference from local internal conformational dynamics. To assess the validity of this approach, the picosecond-to-nanosecond dynamics of the arginine side-chain Nε-Hε bond vectors of E. coli ribonuclease H (RNase H) were determined by NMR spin relaxation and compared to the mechanistic detail provided by molecular dynamics (MD) simulations. The results indicate that arginine Nε spin relaxation primarily reflects persistence of guanidinium salt bridges and correlates well with simulated side-chain conformational entropy. In particular cases, the simulations show that the aliphatic part of the arginine side chain can retain substantial disorder while the guanidinium group maintains its salt bridges; thus, the Nε-Hε bond-vector orientation is conserved and side-chain flexibility is concealed from Nε spin relaxation. The MD simulations and an analysis of a rotamer library suggest that dynamic decoupling of the terminal moiety from the remainder of the side chain occurs for all five amino acids with more than two side-chain dihedral angles (R, K, E, Q and M). Dynamic decoupling thus may represent a general biophysical strategy for minimizing the entropic penalties of folding and binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.