People automatically evaluate faces on multiple trait dimensions, and these evaluations predict important social outcomes, ranging from electoral success to sentencing decisions. Based on behavioral studies and computer modeling, we develop a 2D model of face evaluation. First, using a principal components analysis of trait judgments of emotionally neutral faces, we identify two orthogonal dimensions, valence and dominance, that are sufficient to describe face evaluation and show that these dimensions can be approximated by judgments of trustworthiness and dominance. Second, using a data-driven statistical model for face representation, we build and validate models for representing face trustworthiness and face dominance. Third, using these models, we show that, whereas valence evaluation is more sensitive to features resembling expressions signaling whether the person should be avoided or approached, dominance evaluation is more sensitive to features signaling physical strength/weakness. Fourth, we show that important social judgments, such as threat, can be reproduced as a function of the two orthogonal dimensions of valence and dominance. The findings suggest that face evaluation involves an overgeneralization of adaptive mechanisms for inferring harmful intentions and the ability to cause harm and can account for rapid, yet not necessarily accurate, judgments from faces.emotions ͉ face perception ͉ social cognition T he belief that the nature of the mind and personality could be inferred from facial appearance has persisted over the centuries. References to this belief can be dated back to ancient Greece, Rome, and China (1). In the 19th century, the pseudoscience of physiognomy reached its apogee. Cesare Lombroso, the founder of criminal anthropology, argued that ''each type of crime is committed by men with particular physiognomic characteristics''. For example, ''thieves are notable for their expressive faces and manual dexterity, small wandering eyes that are often oblique in form, thick and close eyebrows, distorted or squashed noses, thin beards and hair, and sloping foreheads'' (2). Lombroso provided his ''scientific'' testimony at several criminal trials.Although modern science, if not folk psychology (3), has largely discarded such notions, trait evaluations from faces predict important social outcomes ranging from electoral success (4-6) to sentencing decisions (7,8). Studies show that people rapidly evaluate faces on multiple trait dimensions such as trustworthiness and aggressiveness (9, 10). For example, trait judgments can be formed after as little as 38-ms exposure to an emotionally neutral face (10). Studies also show that the amygdala, a subcortical brain region critical for fear conditioning and consolidation of emotional memories (11), plays a key role in the assessment of face trustworthiness (12-15).Why do mechanisms for rapid spontaneous face evaluation exist if they do not necessarily deliver accurate inferences? This apparent puzzle from an evolutionary point of view can be resolved b...
We thank Amir Goren, Chris Olivola, Chris Said, Crystal Hall, Sara Verosky, and Sean Baron for their comments on previous drafts of this manuscript.
Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license.Website: http://cosmomvpa.orgSource code: https://github.com/CoSMoMVPA/CoSMoMVPA
Judgments of trustworthiness from faces determine basic approach/avoidance responses and approximate the valence evaluation of faces that runs across multiple person judgments. Here, based on trustworthiness judgments and using a computer model for face representation, we built a model for representing face trustworthiness (study 1). Using this model, we generated novel faces with an increased range of trustworthiness and used these faces as stimuli in a functional Magnetic Resonance Imaging study (study 2). Although participants did not engage in explicit evaluation of the faces, the amygdala response changed as a function of face trustworthiness. An area in the right amygdala showed a negative linear response-as the untrustworthiness of faces increased so did the amygdala response. Areas in the left and right putamen, the latter area extended into the anterior insula, showed a similar negative linear response. The response in the left amygdala was quadratic--strongest for faces on both extremes of the trustworthiness dimension. The medial prefrontal cortex and precuneus also showed a quadratic response, but their response was strongest to faces in the middle range of the trustworthiness dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.