Single-borehole dilution tests (SBDTs) are a method for characterizing groundwater monitoring wells and boreholes, and are based on the injection of a tracer into the saturated zone and the observation of concentration over depth and time. SBDTs are applicable in all aquifer types, but especially interesting in heterogeneous karst or fractured aquifers. Uniform injections aim at a homogeneous tracer concentration throughout the entire saturated length and provide information about inflow and outflow horizons. Also, in the absence of vertical flow, horizontal filtration velocities can be calculated. The most common method for uniform injections uses a hosepipe to inject the tracer. This report introduces a simplified method that uses a permeable injection bag (PIB) to achieve a close-to-uniform tracer distribution within the saturated zone. To evaluate the new method and to identify advantages and disadvantages, several tests have been carried out, in the laboratory and in multiple groundwater monitoring wells in the field. Reproducibility of the PIB method was assessed through repeated tests, on the basis of the temporal development of salt amount and calculated apparent filtration velocities. Apparent filtration velocities were calculated using linear regression as well as by inverting the one-dimensional (1D) advection-dispersion equation using CXTFIT. The results show that uniform-injection SBDTs with the PIB method produce valuable and reproducible outcomes and contribute to the understanding of groundwater monitoring wells and the respective aquifer. Also, compared to the hosepipe method, the new injection method requires less equipment and less effort, and is especially useful for deep boreholes.
Water suppliers face major challenges such as climate change and population growth. To prepare for the future, detailed knowledge of water resources is needed. In southern Germany, the state water supplier Zweckverband Landeswasserversorgung provides 3 million people with drinking water obtained from a complex karst and alluvial aquifer system and the river Danube. In this study, a combination of different tracing techniques was used with the goal of a multi-scale characterization of the aquifer system and to gain additional knowledge about groundwater flow toward the extraction wells in the Danube Valley. For the small-scale characterization, selected groundwater monitoring wells were examined using single-borehole dilution tests. With these tests, a wide range of flow behavior could be documented, including fast outflow within just a few hours in wells with good connection to the aquifer, but also durations of many weeks in low-permeability formations. Vertical flow, caused by multiple flow horizons or uprising groundwater, was detected in 40% of the tested wells. A regional multi-tracer test with three injections was used to investigate the aquifer on a large scale. For the highly karstified connection between a swallow hole and a spring group, high flow velocities of around 80 m/h could be documented. Exceptionally delayed arrivals, 250 and 307 days after the injection, respectively showing maximum velocities of 0.44 and 0.39 m/h, were observed in an area where low-permeability sediments overlay the karst conduits. With the chosen methods, a distinct heterogeneity caused by the geological setting could be documented on both scales.
Groundwater monitoring wells or boreholes often show complex flow behaviors that are essential to understand for the characterization of aquifer systems. In karst or fractured aquifers, where complex conduit and/or fracture networks with differing hydraulic heads can be intersected by a well or borehole, vertical flow is highly probable. Single-borehole dilution tests (SBDT) with uniform injections are, in general, a good method to gain knowledge about a specific well or borehole, but tend to deliver ambiguous results regarding vertical flow, while SBDTs with point injections are an effective method to identify vertical flow. This technical note introduces a newly developed probe for point injections in groundwater without disturbing the natural flow field. In order to evaluate this probe, several tests were conducted in the laboratory and in groundwater monitoring wells that show vertical flow. During repeated tests in the laboratory, the new point injection probe showed a good reproducibility regarding the shape and extent of the tracer cloud after an injection. The opening mechanism was found to be well-functioning and reliable. Field tests lead to significant results for all tested wells and showed that the probe can easily be operated by a single person. Due to the flexibility regarding tracer, aquifer and injection depth, combined with the easy handling, it is a useful device, suitable for the investigation of boreholes and groundwater monitoring wells, and a good alternative to existing methods.
Karst aquifers are important resources for drinking water supply and are very vulnerable to contamination. Microbial concentrations at karst springs, in particular, often vary quickly over a short period of time. In this study, the response of microbial water quality and particle-size distribution of two alpine karst springs to rainfall events was investigated to test and validate parameters that can be used as early-warning systems for fecal contamination. At both investigated karst springs, total organic carbon, particle-size distribution (especially small particle fractions), and particle load show a good correlation to the fecal indicator bacteria E. coli and can therefore be used as a real-time indicator of fecal contamination at the investigated springs. In addition to conventional bacterial determination methods, the β-D-glucuronidase activity, which can be measured in near real-time, was used as a novel indicator parameter for fecal contamination. At the event scale, the β-D-glucuronidase (GLUC) activity shows a good correlation to E. coli and can be used as an additional real-time indicator of fecal contamination. For the studied springs, when they show two peaks in turbidity and small particles, these two parameters are suitable for an early warning system because the bacterial contamination occurs during the secondary peak of these parameters. These results highlight the vulnerability of karst aquifers and demonstrate the applicability of advanced measurement techniques in detecting fecal contamination in real-time, which is especially important given the time-consuming nature of conventional bacterial detection methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.