We report the cloning of a gene, S2P, that encodes a putative metalloprotease required for intramembrane proteolysis of sterol-regulatory element-binding proteins (SREBPs) at Site-2. SREBPs are membrane-bound transcription factors that activate genes regulating cholesterol metabolism. The active NH2-terminal domains of SREBPs are released from membranes by sequential cleavage at two sites: Site-1, within the lumen of the endoplasmic reticulum; and Site-2, within a transmembrane segment. The human S2P gene was cloned by complementation of mutant CHO cells that cannot cleave SREBPs at Site-2 and are cholesterol auxotrophs. S2P defines a new family of polytopic membrane proteins that contain an HEXXH sequence characteristic of zinc metalloproteases. Mutation of the putative zinc-binding residues abolishes S2P activity. S2P encodes an unusual metalloprotease that cleaves proteins within transmembrane segments.
Cellular cholesterol homeostasis is controlled by sterol‐regulated proteolysis of membrane‐bound transcription factors called sterol‐regulatory element binding proteins (SREBPs). CPP32, a cysteine protease, was shown previously to cleave SREBP‐1 and SREBP‐2 in vitro at an aspartic acid between the basic helix‐loop‐helix leucine zipper domain and the first trans‐membrane domain, liberating a transcriptionally active fragment. Here, we show that CPP32 exists in an inactive 32 kDa form in Chinese hamster ovary (CHO) cells. When apoptosis was induced with the protein kinase inhibitor staurosporine, CPP32 was cleaved to subunits of 20 and 10 kDa to form the active protease. Under these conditions membrane‐bound SREBP‐1 and SREBP‐2 were both cleaved, and the transcriptionally active N‐terminal fragments were found in nuclear extracts. Similar results were obtained in human U937 cells induced to undergo apoptosis by anti‐Fas and etoposide. The apoptosis‐induced cleavage of SREBPs was not suppressed by sterols, indicating that apoptosis‐induced cleavage and sterol‐regulated cleavage are mediated by different proteases. CHO cells expressing a mutant SREBP‐2 with an Asp–> Ala mutation at the CPP32 cleavage site showed sterol‐regulated cleavage but no apoptosis‐induced cleavage. These data are consistent with the emerging concept that CPP32 is a central mediator in apoptosis. They also indicate that SREBPs, like poly (ADP) ribose polymerase, are cleaved by CPP32 during programmed cell death.
In sterol-depleted mammalian cells, a two-step proteolytic process releases the NH 2 -terminal domains of sterol regulatory element-binding proteins (SREBPs) from membranes of the endoplasmic reticulum (ER). These domains translocate into the nucleus, where they activate genes of cholesterol and fatty acid biosynthesis. The SREBPs are oriented in the membrane in a hairpin fashion, with the NH 2 -and COOH-terminal domains facing the cytosol and a single hydrophilic loop projecting into the lumen. The first cleavage occurs at Site-1 within the ER lumen to generate an intermediate that is subsequently released from the membrane by cleavage at Site-2, which lies within the first transmembrane domain. A membrane protein, designated S2P, a putative zinc metalloprotease, is required for this cleavage. Here, we use protease protection and glycosylation site mapping to define the topology of S2P in ER membranes. Both the NH 2 and COOH termini of S2P face the cytosol. Most of S2P is hydrophobic and appears to be buried in the membrane. All three of the long hydrophilic sequences of S2P can be glycosylated, indicating that they all project into the lumen. The HEIGH sequence of S2P, which contains two potential zinc-coordinating residues, is contained within a long hydrophobic segment. Aspartic acid 467, located ϳ300 residues away from the HEIGH sequence, appears to provide the third coordinating residue for the active site zinc. This residue, too, is located in a hydrophobic sequence. The hydrophobicity of these sequences suggests that the active site of S2P is located within the membrane in an ideal position to cleave its target, a Leu-Cys bond in the first transmembrane helix of SREBPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.