The template effect of giant polyoxometalates (POM) shows promising results towards the supramolecular design of hybrid materials suitable for photocatalytic reactions. Here, we demonstrate a novel synthetic approach for covalently grafting the xanthene dye eosin Y (EY) to the nanoscale Keplerate POM {Mo132} via an organosilicon linker (3-aminopropyltrimethoxysilane, APTMS) in a homogeneous regime. Using a phase transfer agent, tetrabutylammonium bromide, we solubilize the Keplerate POM modified with six {Si(CH2)3NH2} groups, {Mo132}@Si6, in a series of organic solvents—acetonitrile, acetone, tetrahydrofuran, and dichloromethane—to perform post-functionalization by using an NHS-ester of EY. Both IR and Raman spectroscopy affirm the preservation of the POM’s structure and showcase an amide bond formation between POM and EY in the obtained conjugate {Mo132}@Si6@EY@TBA. Grafting’s success is observed through significant downfield shifting of EY’s aromatic protons’ signals on the 1H NMR spectrum as compared to the spectra of EY and EY-NHS. The current synthetic approach enables us to exercise precise control of the stoichiometry in the POM-dye conjugates—1:1 for the POM-EY system—as confirmed by elemental analysis. Comprehensive photophysical analysis of {Mo132}@Si6@EY@TBA by means of UV-Vis and steady-state and time-resolved fluorescence measurements points to an existing strong interaction between molecular orbitals of EY and {Mo132}, leading to a photoinduced electron transfer, partial fluorescence quenching, and elongation of the excited state’s lifetime. These findings demonstrate that using APTMS as an organosilicon linker in tandem with the Keplerate POM as a nanoscale template can be readily applied as a routine synthetic procedure for grafting various organic dyes or other organic molecules bearing a carboxylic group in their structure to the giant POM surface in a variety of aprotic organic solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.