Outer hair cells (OHCs) of the mammalian cochlea actively change their cell length in response to changes in membrane potential. This electromotility, thought to be the basis of cochlear amplification, is mediated by a voltage-sensitive motor molecule recently identified as the membrane protein prestin. Here, we show that voltage sensitivity is conferred to prestin by the intracellular anions chloride and bicarbonate. Removal of these anions abolished fast voltage-dependent motility, as well as the characteristic nonlinear charge movement ("gating currents") driving the underlying structural rearrangements of the protein. The results support a model in which anions act as extrinsic voltage sensors, which bind to the prestin molecule and thus trigger the conformational changes required for motility of OHCs.
AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity. This diversity results from coassembly of the known AMPAR subunits, pore-forming GluA and three types of auxiliary proteins, with 21 additional constituents, mostly secreted proteins or transmembrane proteins of different classes. Their integration at distinct abundance and stability establishes the heteromultimeric architecture of native AMPAR complexes: a defined core with a variable periphery resulting in an apparent molecular mass between 0.6 and 1 MDa. The additional constituents change the gating properties of AMPARs and provide links to the protein dynamics fundamental for the complex role of AMPARs in formation and operation of glutamatergic synapses.
Glutamate receptors of the AMPA-subtype (AMPARs), together with the transmembrane AMPAR regulatory proteins (TARPs), mediate fast excitatory synaptic transmission in the mammalian brain. Here, we show by proteomic analysis that the majority of AMPARs in the rat brain are coassembled with two members of the cornichon family of transmembrane proteins, rather than with the TARPs. Coassembly with cornichon homologs 2 and 3 affects AMPARs in two ways: Cornichons increase surface expression of AMPARs, and they alter channel gating by markedly slowing deactivation and desensitization kinetics. These results demonstrate that cornichons are intrinsic auxiliary subunits of native AMPARs and provide previously unknown molecular determinants for glutamatergic neurotransmission in the central nervous system.
Fast inhibitory synaptic transmission in the central nervous system is mediated by ionotropic GABA or glycine receptors. Auditory outer hair cells present a unique inhibitory synapse that uses a Ca2+-permeable excitatory acetylcholine receptor to activate a hyperpolarizing potassium current mediated by small conductance calcium-activated potassium (SK) channels. It is shown here that unitary inhibitory postsynaptic currents at this synapse are mediated by SK2 channels and occur rapidly, with rise and decay time constants of approximately 6 ms and approximately 30 ms, respectively. This time course is determined by the Ca2+ gating of SK channels rather than by the changes in intracellular Ca2+. The results demonstrate fast coupling between an excitatory ionotropic neurotransmitter receptor and an inhibitory ion channel and imply rapid, localized changes in subsynaptic calcium levels.
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.