The systematization results of microstructure studies of carbon steel has made it possible to explain the mechanism of formation of certain damages to the rolling surface of railway wheels during operation. The evaluation ability of metal to strain hardening was used to explain the nature of the influence compactly located non-deformable dispersed particles on the strength properties steel during cold plastic deformation. In the process of the interaction of a railway wheel with a rail, successively occurring heterogeneities in the distribution of the plastic flow metal are one of the main reasons for the formation of defects on the rolling surface of the wheel.
Purpose. The purpose of work is the possibility estimation of аthermic technologies use of cold-deformed metal softening for elements of railway car body and wheel. Methodology. The material for research is the carbon steel of the wheel rim fragment containing 0.55%С, 0.74%Mn, 0.33%Si, and the steel 20. The wheel steel is studied after heat strengthening and cold work after operation. Steel 20 is studied after plastic cold work by rolling. Electric pulse treatment (ET) is carried out on the special equipment. As the property of metal strength the Vickers hardness number is used. The microstructure research is carried out using the light and electronic microscope. Findings. During operation of the rolling stock elements with different strength level origin of damages on metallic surfaces is caused by a simultaneous load action. Taking into account that forming of breakdown sites is largely determined by the state of metal volumes nearby the places of maximal active voltages, the technology development of defect accumulation slowdown or the level of active voltages development allow one to prolong the operating term of rolling stock elements. After electric pulse treatment of the wheel rim fragment the regular changes of metal internal structure corresponded to the hardness changes. The hardness of low carbon steel increases proportional to the increase of the level of cold work by rolling. Alternating bending of the cold-deformed flat is accompanied by strength decrease, which is caused by the metal substructure changes. Originality. The softening process of the cold-worked steel is accompanied by substructure changes, which to a greater extent correspond to the hardening development from the plastic cold-work: dispersion of the dislocation cellular structure, formation of the new sub boundaries and displacement of the formed sub boundaries. Practical value. Introduction of electric pulse treatment in the conditions of railway depots repair base allow one to attain the required level of softening of the cold-worked steel on the wheel thread of railway wheel without heating of metal. The given treatment reduces the metal hardness and prolongs the term of incisors use during the renovation of the rolling profile of the railway wheel
Journal homepage: http://sjsutst.polsl.pl Article citation information: Vakulenko, I., Grischenko, N., Vakulenko, L., Efremenko, V., Proiydak, S., Perkov, O. Structure and properties of the steel railway wheel disc after forced cooling.Summary. The technological use of accelerated cooling makes it possible to improve the carbon steel properties of the all-rolled railway wheel disc. The properties' complex depends on the temperature of the accelerated cooling termination. This is determined by the ratio of the carbon atoms emitted from the supersaturated solid solution to the crystal structure defects and dispersion strengthening from carbide phase particles. If the cooling stops at a temperature above 350°C, the decline rate of the strength properties increases. This is caused by the excessive softening effect of the solid solution breakdown and cementite spheroidization during the processes of dispersion hardening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.