The inheritance of cucumber fruit neck size and its linkage relationships with the fruit length and 10 other characteristics was investigated . Frequency distributions and the means of generations indicate intermediate inheritance for neck size and fruit length . Correlation and regression analysis suggest strong linkage between fruit neck size and fruit length . Chi square analysis of the F2 and BC generations indicate independent assortment of the fruit neck size and the following characters : bitterness, female sex expression, spine color, spine size, warted fruit, uniform color of immature fruit, mature fruit color, dull fruit skin, epidermal structure, and powdery mildew resistance .
In recent years, we have witnessed the proliferation of knowledge graphs (KG) in various domains, aiming to support applications like question answering, recommendations, etc. A frequent task when integrating knowledge from different KGs is to find which subgraphs refer to the same real-world entity, a task largely known as the Entity Alignment. Recently, embedding methods have been used for entity alignment tasks, that learn a vector-space representation of entities which preserves their similarity in the original KGs. A wide variety of supervised, unsupervised, and semi-supervised methods have been proposed that exploit both factual (attribute based) and structural information (relation based) of entities in the KGs. Still, a quantitative assessment of their strengths and weaknesses in real-world KGs according to different performance metrics and KG characteristics is missing from the literature. In this work, we conduct the first meta-level analysis of popular embedding methods for entity alignment, based on a statistically sound methodology. Our analysis reveals statistically significant correlations of different embedding methods with various meta-features extracted by KGs and rank them in a statistically significant way according to their effectiveness across all real-world KGs of our testbed. Finally, we study interesting trade-offs in terms of methods’ effectiveness and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.