Abstract. The effects of coma anisotropies on the plasma environment of comets have been studied by means of a 3-D hybrid model which treats electrons as a massless, chargeneutralizing fluid, whereas ion dynamics are covered by a kinetic approach. From Earth-based observations as well as from in-situ spacecraft measurements the shape of the coma of many comets is ascertained to be anisotropic. However, most plasma simulation studies deploy a spherically symmetric activity pattern. In this paper anisotropy is studied by considering three different coma shape models. The first model is derived from the Haser model and is characterised by spherically symmetry. This reference model is then compared with two different neutral gas shape models: the dayside restricted model with no nightside activity and a cone shaped model with opening angle of π/2. In all models the integrated surface activity is kept constant. The simulations have been done for the Rosetta target comet 67P/Churyumov-Gerasimenko for two heliocentric distances, 1.30 AU and 3.25 AU. It is found that shock formation processes are modified as a result of increasing spatial confinement. Characteristic plasma structures of comets such as the bow shock, magnetic barrier region and the ion composition boundary exhibit a shift towards the sun. In addition, the cone shaped model leads to a strong increase of the mass-loaded region which in turn leads to a smooth deceleration of the solar wind flow and an increasing degree of mixture between the solar wind and cometary ion species. This creates an additional transport channel of the magnetic field from the magnetic barrier region away which in turn leads to a broadening of this region. In addition, it leads to an ion composition boundary which is only gradually developed.
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed.The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
We simulate the evolution of the plasma environment of comet 67P/Churyumov-Gerasimenko (CG), which is the target comet of the European Space Agency's (ESA) Rosetta mission, as the comet approaches the Sun. The plasma environment is calculated in three dimensions with a hybrid plasma model. The model treats the dynamics of the solar wind protons and the cometary ions in the framework of the macroparticle approach while the electrons are treated as a massless, charge-neutralizing fluid. The simulation starts at 4.2 AU and finishes at 1.3 AU. The outgassing strength of the comet is calculated from a thermal nucleus model. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation processes in a porous ice-dust matrix with moving boundaries. The movement of the boundaries (Stefan problem) is accounted for by a temperature remapping technique. The maxima of the cometary ion flux and of the magnetic field in the simulation domain are presented as functions of heliocentric distance. The bow shock (BS), the ion composition boundary (ICB), and the magnetic pileup boundary (MPB) position along the Sun-comet line as a function of heliocentric distance are also discussed. A comparison of the BS position with an analytical formula yields good agreement. The MPB and the ICB along the Sun-comet line coincide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.