Carbon capture and sequestration (CCS) technology is going to play an important role in the countermeasures for climate change. The design of the relevant processes requires accurate knowledge of primary and derivative properties of various pure components and mixtures over a wide range of temperatures and pressures. This paper focuses on the derivative properties of pure components related to CCS. An equation of state (EoS) with strong physical basis is suitable for such calculations. SAFT and PC-SAFT EoS are used to predict these properties, and their performance is evaluated against literature experimental data. The pressures and temperatures for the calculations are selected so as to cover an adequate range for the CCS process. EoS predictions are in good agreement with experimental data, with the exception of the critical region, where higher deviations are observed.
Accurate thermodynamic models for phase equilibria calculations of carbon dioxide mixtures with other gases are of high importance for the safe and economic design of carbon capture and storage (CCS) technologies. In this work, we assess the capability of Redlich−Kwong (RK), Soave−Redlich−Kwong (SRK), Peng−Robinson (PR) cubic equations of state (EoS), as well as Statistical Associating Fluid Theory (SAFT) and Perturbed-Chain SAFT (PC-SAFT) in modeling vapor−liquid equilibria for binary mixtures of CO 2 with CH 4 , N 2 , O 2 , SO 2 , Ar, and H 2 S, and for the ternary mixture CO 2 −N 2 −O 2 . Liquid density calculations for some of these mixtures are also performed. Experimental data available are used to assess the accuracy of the models. Two different expressions are used for the calculation of parameter α in PR EoS. PC-SAFT is, on average, more accurate than cubic EoS and SAFT when no binary interaction parameter is used. However, when a binary interaction parameter fitted to the experimental data is used, model correlations from SRK, PR, SAFT, and PC-SAFT are of comparable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.