Therapeutic regimens for the COVID‐19 pandemics remain unmet. In this line, repurposing of existing drugs against known or predicted SARS‐CoV‐2 protein actions have been advanced, while natural products have also been tested. Here, we propose that p‐cymene, a natural monoterpene, can act as a potential novel agent for the treatment of SARS‐CoV‐2‐induced COVID‐19 and other RNA‐virus‐induced diseases (influenza, rabies, Ebola). We show by extensive molecular simulations that SARS‐CoV‐2 C‐terminal structured domain contains a nuclear localization signal (NLS), like SARS‐CoV, on which p‐cymene binds with low micromolar affinity, impairing nuclear translocation of this protein and inhibiting viral replication, as verified by preliminary in vitro experiments. A similar mechanism may occur in other RNA‐viruses (influenza, rabies and Ebola), also verified in vitro for influenza, by interaction of p‐cymene with viral nucleoproteins, and structural modification of their NLS site, weakening its interaction with importin A. This common mechanism of action renders therefore p‐cymene as a possible antiviral, alone, or in combination with other agents, in a broad spectrum of RNA viruses, from SARS‐CoV‐2 to influenza A infections.
Candida auris has recently emerged as a multidrug-resistant yeast implicated in various healthcare-associated invasive infections and hospital outbreaks. In the current study, we report the first five intensive care unit (ICU) cases affected by C. auris isolates in Greece, during October 2020–January 2022. The ICU of the hospital was converted to a COVID-19 unit on 25 February 2021, during the third wave of COVID-19 in Greece. Identification of the isolates was confirmed by Matrix Assisted Laser Desorption Ionization Time of Flight mass spectroscopy (MALDI-TOF]. Antifungal susceptibility testing was performed by the EUCAST broth microdilution method. Based on the tentative CDC MIC breakpoints, all five C. auris isolates were resistant to fluconazole (≥32 μg/mL), while three of them exhibited resistance to amphotericin B (≥2 μg/mL). The environmental screening also revealed the dissemination of C. auris in the ICU. Molecular characterization of C. auris clinical and environmental isolates was performed by MultiLocus Sequence Typing (MLST) of a set of four genetic loci, namely ITS, D1/D2, RPB1 and RPB2, encoding for the internal transcribed spacer region (ITS) of the ribosomal subunit, the large ribosomal subunit region and the RNA polymerase II largest subunit, respectively. MLST analysis showed that all isolates possessed identical sequences in the four genetic loci and clustered with the South Asian clade I strains. Additionally, PCR amplification and sequencing of the CJJ09_001802 genetic locus, encoding for the “nucleolar protein 58” that contains clade-specific repeats was performed. Sanger sequence analysis of the TCCTTCTTC repeats within CJJ09_001802 locus also assigned the C. auris isolates to the South Asian clade I. Our study confirms that C. auris is an emerging yeast pathogen in our region, especially in the setting of the ongoing COVID-19 worldwide pandemic. Adherence to strict infection control is needed to restrain further spread of the pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.