Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here we show that high glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory RAGE (receptor for advanced glycation end products/AGEs). HRECs treated with methylglyoxal (MGO), an active precursor to the AGE MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of MGO/RAGE, primarily through its ability to crosslink/stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. Collectively, these findings provide fresh mechanistic insights into the regulation and proinflammatory role of LOX-dependent mechanical cues in diabetes while simultaneously implicating LOX as an alternative (downstream) target to block AGE/RAGE signaling in DR.
Age‐related macular degeneration (AMD) is the leading cause of blindness in the aging population. Yet no therapies exist for ~85% of all AMD patients who have the dry form that is marked by degeneration of the retinal pigmented epithelium (RPE) and underlying choroidal vasculature. As the choroidal vessels are crucial for RPE development and maintenance, understanding how they degenerate may lead to effective therapies for dry AMD. One likely causative factor for choroidal vascular loss is the cytolytic membrane attack complex (MAC) of the complement pathway that is abundant on choroidal vessels of humans with early dry AMD. To examine this possibility, we studied the effect of complement activation on choroidal endothelial cells (ECs) isolated from a rhesus monkey model of early AMD that, we report, exhibits MAC deposition and choriocapillaris endothelial loss similar to that seen in human early AMD. Treatment of choroidal ECs from AMD eyes with complement‐competent normal human serum caused extensive actin cytoskeletal injury that was significantly less pronounced in choroidal ECs from young normal monkey eyes. We further show that ECs from AMD eyes are significantly stiffer than their younger counterparts and exhibit peripheral actin organization that is distinct from the longitudinal stress fibers in young ECs. Finally, these differences in complement susceptibility and mechanostructural properties were found to be regulated by the differential activity of the small GTPases Rac and Rho, because Rac inhibition in AMD cells led to simultaneous reduction in stiffness and complement susceptibility, while Rho inhibition in young cells exacerbated complement injury. Thus, by identifying cell stiffness and cytoskeletal regulators Rac and Rho as important determinants of complement susceptibility, the current findings offer a new mechanistic insight into choroidal vascular loss in early AMD that warrants further investigation for assessment of translational potential. © 2022 The Pathological Society of Great Britain and Ireland.
Osteoarthritis (OA) is the most common major disabling disease in humans and horses. Hyaluronic acid (HA), naturally abundantly present in synovial fluid (SF), is thought to have crucial impact on the functional rheological and biochemical features of SF in healthy and osteoarthritic joints. Here we present comparative measurements of HA concentration in SF from 35 normal and osteoarthritic equine joints, between two different approaches. On the one hand, an established biochemical HA-specific Enzyme–Linked Immunosorbent Assay (ELISA) assay was employed, which determined that SF in healthy and osteoarthritic equine joints is characterized by HA concentration of ca 0.3–2 mg/mL and 0.1–0.7 mg/mL respectively. On the other hand the same SF samples were also examined with a new exploratory approach of finding out HA concentration, which is based on SF rheology. This was done following “calibration” using appropriate model HA solutions. Comparative analysis of the results obtained by both the biochemical and the rheological approaches, revealed that in most cases the rheological approach greatly overestimates HA concentration in SF, by ca 3 to 8 times and 6 to 11 times, in healthy and diseased SF respectively. Overall these findings support the notion that, contrary to the established view, HA may not be the major contributor of equine SF rheology. This should be taken into account for the development of new more effective preventive strategies, as well as more effective early-stage interventions in osteoarthritis.
<p> </p> <p>Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. <br> We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here we show that high glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory RAGE (receptor for advanced glycation end products/AGEs). HRECs treated with methylglyoxal (MGO), an active precursor to the AGE MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of MGO/RAGE, primarily through its ability to crosslink/stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. Collectively, these findings provide fresh mechanistic insights into the regulation and proinflammatory role of LOX-dependent mechanical cues in diabetes while simultaneously implicating LOX as an alternative (downstream) target to block AGE/RAGE signaling in DR.</p>
<p> </p> <p>Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. <br> We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here we show that high glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory RAGE (receptor for advanced glycation end products/AGEs). HRECs treated with methylglyoxal (MGO), an active precursor to the AGE MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of MGO/RAGE, primarily through its ability to crosslink/stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. Collectively, these findings provide fresh mechanistic insights into the regulation and proinflammatory role of LOX-dependent mechanical cues in diabetes while simultaneously implicating LOX as an alternative (downstream) target to block AGE/RAGE signaling in DR.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.