The way machining operations have been running has changed over the years. Nowadays, machine utilization and availability monitoring are becoming increasingly important for the smooth operation of modern workshops. Moreover, the nature of jobs undertaken by manufacturing small and medium enterprises (SMEs) has shifted from a mass production to small batch. To address the challenges caused by modern fast changing environments, a new cloud-based approach for monitoring the use of manufacturing equipment, dispatching jobs to the selected computer numerical control (CNC) machines, and creating the optimum machining code is presented. In this approach the manufacturing equipment is monitored using a sensor network and though an information fusion technique it derives and broadcasts the data of available tools and machines through the internet to a cloud-based platform. On the manufacturing equipment event driven function blocks with embedded optimization algorithms are responsible for selecting the optimal cutting parameters and generating the moves required for machining the parts while considering the latest information regarding the available machines and cutting tools. A case study based on scenario from a shop floor that undertakes machining jobs is used to demonstrate the developed methods and tools.
With the advent of the fourth industrial revolution (Industry 4.0), manufacturing systems are transformed into digital ecosystems. In this transformation, the internet of things (IoT) and other emerging technologies pose a major role. To shift manufacturing companies toward IoT, smart sensor systems are required to connect their resources into the digital world. To address this issue, the proposed work presents a monitoring system for shop-floor control following the IoT paradigm. The proposed monitoring system consists of a data acquisition device (DAQ) capable of capturing quickly and efficiently the data from the machine tools, and transmits these data to a cloud gateway via a wireless sensor topology. The monitored data are transferred to a cloud server for further processing and visualization. The data transmission is performed in two levels, i.e., locally in the shop-floor using a star wireless sensor network (WSN) topology with a microcomputer gateway and from the microcomputer to Cloud using Internet protocols. The developed system follows the loT paradigm in terms of connecting the physical with the cyber world and offering integration capabilities with existing industrial systems. In addition, the open platform communication—unified architecture (OPC-UA) standard is employed to support the connectivity of the proposed monitoring system with other IT tools in an enterprise. The proposed monitoring system is validated in a laboratory as well as in machining and mold-making small and medium-sized enterprises (SMEs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.