Alterations of body sway caused by isometric contractions of the jaw muscles have been reported previously. The objective of this study was to test if motor tasks of the masticatory system with different control demands affect body posture differently during quiet stance. Position and sway displacements of the center of foot pressure (COP) were measured for 20 healthy subjects who either kept the mandible at rest or performed unilateral and bilateral maximum voluntary teeth clenching, feedback-controlled biting tasks at submaximum bite forces, or unilateral chewing. Two weeks later the measurements were repeated. Compared with quiet stance, the COP results revealed significant changes during the feedback-controlled biting tasks. Robust sway reduction and anterior displacement of the COP were observed under these conditions. Body oscillations were not significantly affected by maximum bites or by unilateral chewing. For most of the variables investigated there were no significant differences between unilateral and bilateral biting. Robust sway reduction during feedback-controlled biting tasks in healthy subjects involved a stiffening phenomenon that was attributed to the common physiological repertoire of posture control, and might optimize the stability of posture under these conditions.
Neuromuscular adaptations during skill acquisition have been extensively investigated for skeletal muscles. Motor rehabilitation is the main target for application of motor training. Such measures are also relevant for the musculature of the jaw, but few data are available for motor adaptation of the masticatory system. The objective of this study was to evaluate and compare long-term training effects of different motor tasks on masseter and temporal muscles. In 20 healthy subjects, the electromyographic response to unilateral and bilateral maximum voluntary tooth clenching, balancing the mandible on a hydrostatic system under force-feedback-controlled conditions, and unilateral chewing was investigated in an initial session and then in two follow-up sessions separated by 2 and 10 weeks from baseline. Motor tasks were repeated three times for chewing, nine times for maximum biting (MB) and 24 times for the coordination tasks (CT). The sequences of the various motor tasks were applied once in the first session and twice in the second and third sessions. No effects of training were observed for MB tasks except for MB in intercuspation, for which significant yet transient avoidance behaviour occurred in the second session. No significant effects were found for chewing tests. For the CT, however, a robust significant long-term training effect was detected which reduced the electric muscle activity in session 2 by approximately 20% and in session 3 by approximately 40% compared with the initial measurements. The study showed that the masticatory muscles are remarkably prone to motor adaptation if demanding CT must be accomplished.
Aim of this study was to introduce a feasible and valid technique for the assessment of masticatory performance that is comparable to the standard sieving method. Twenty-one chewing samples (Optosil) comminuted by healthy dentate adults were analysed with a sieving and scanning method. Scanning was performed using a conventional flatbed scanner (1200dpi). All scanned images underwent image analysis (ImageJ), which yielded descriptive parameters such as area, best-fitting ellipse for each particle. Of the 2D-image, a volume was estimated for each particle, which was converted into a weight. To receive a discrete distribution of particle sizes comparable to sieving, five chewing samples were used to calculate a size-dependent area-volume-conversion factor. The sieving procedure was carried out with a stack of 10 sieves, and the retained particles per sieve were weighed. The cumulated weights yielded by either method were curve-fitted with the Rosin-Rammler distribution to determine the median particle size x(50) . The Rosin-Rammler distributions for sieving and scanning resemble each other. The distributions show a high correlation (0·919-1·0, n= 21, P<0·01, Pearson's correlation coefficient). The median particle sizes vary between 3·83 and 4·77mm (mean: 4·31) for scanning and 3·53 and 4·55mm (mean: 4·21) for sieving. On average, scanning overestimates the x(50) values by 2·4%. A modified Bland-Altman plot reveals that 95% of the x(50) values fall within 10% of the average x(50) . The scanning method is a valid, simple and feasible method to determine masticatory performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.