This paper presents a novel variational method for supervised texture segmentation. The textured feature space is generated by filtering the given textured images using isotropic and anisotropic filters, and analyzing their responses as multi-component conditional probability density functions. The texture segmentation is obtained by unifying region and boundary-based information as an improved Geodesic Active Contour Model. The defined objective function is minimized using a gradient-descent method where a level set approach is used to implement the obtained PDE. According to this PDE, the curve propagation towards the final solution is guided by boundary and region-based segmentation forces, and is constrained by a regularity force. The level set implementation is performed using a fast front propagation algorithm where topological changes are naturally handled. The performance of our method is demonstrated on a variety of synthetic and real textured frames.
In this paper, we propose an edge-driven bidirectional geometric flow for boundary extraction. To this end, we combine the geodesic active contour flow and the gradient vector flow external force for snakes. The resulting motion equation is considered within a level set formulation, can deal with topological changes and important shape deformations. An efficient numerical schema is used for the flow implementation that exhibits robust behavior and has fast convergence rate. Promising results on real and synthetic images demonstrate the potentials of the flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.