Electromagnetic metasurfaces can be characterized as intelligent if they are able to perform multiple tunable functions, with the desired response being controlled by a computer influencing the individual electromagnetic properties of each metasurface inclusion. In this paper, we present an example of an intelligent metasurface which operates in the reflection mode in the microwave frequency range. We numerically show that without changing the main body of the metasurface we can achieve tunable perfect absorption and tunable anomalous reflection. The tunability features can be implemented using mixed-signal integrated circuits (ICs), which can independently vary both the resistance and reactance, offering complete local control over the complex surface impedance. The ICs are embedded in the unit cells by connecting two metal patches over a thin grounded substrate and the reflection property of the intelligent metasurface can be readily controlled by a computer. Our intelligent metasurface can have significant influence on future space-time modulated metasurfaces and a multitude of applications, such as beam steering, energy harvesting, and communications. This paper is published at Phys. Rev. Applied.
Metasurfaces, the ultrathin, 2D version of metamaterials, have recently attracted a surge of attention for their capability to manipulate electromagnetic waves. Recent advances in reconfigurable and programmable metasurfaces have greatly extended their scope and reach into practical applications. Such functional sheet materials can have enormous impact on imaging, communication, and sensing applications, serving as artificial skins that shape electromagnetic fields. Motivated by these opportunities, this progress report provides a review of the recent advances in tunable and reconfigurable metasurfaces, highlighting the current challenges and outlining directions for future research. To better trace the historical evolution of tunable metasurfaces, a classification into globally and locally tunable metasurfaces is first provided along with the different physical addressing mechanisms utilized. Subsequently, coding metasurfaces, a particular class of locally tunable metasurfaces in which each unit cell can acquire discrete response states, is surveyed, since it is naturally suited to programmatic control. Finally, a new research direction of software‐defined metasurfaces is described, which attempts to push metasurfaces toward unprecedented levels of functionality by harnessing the opportunities offered by their software interface as well as their inter‐ and intranetwork connectivity and establish them in real‐world applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.