The rate of force development (RFD) is an essential component for performance in explosive activities, although it has been proposed that muscle architectural characteristics might be linked with RFD and power performance. The purpose of the study was to investigate the relationship between RFD, muscle architecture, and performance in young track and field throwers. Twelve young track and field throwers completed 10 weeks of periodized training. Before (T1) and after (T2) training performance was evaluated in competitive track and field throws, commonly used shot put tests, isometric leg press RFD, 1 repetition maximum (1RM) strength as well as vastus lateralis architecture and body composition. Performance in competitive track and field throwing and the shot put test from the power position increased by 6.76 ± 4.31% (p < 0.001) and 3.58 ± 4.97% (p = 0.019), respectively. Rate of force development and 1RM strength also increased (p ≤ 0.05). Vastus lateralis thickness and fascicle length increased by 5.95 ± 7.13% (p = 0.012) and 13.41 ± 16.15% (p = 0.016), respectively. Significant correlations were found at T1 and T2, between performance in the shot put tests and both RFD and fascicle length (p ≤ 0.05). Close correlations were found between RFD, muscle thickness, and fascicle length (p ≤ 0.05). Significant correlations were found between the % changes in lean body mass and the % increases in RFD. When calculated together, the % increase in muscle thickness and RFD could predict the % increase in shot put throw test from the power position (p = 0.019). These results suggest that leg press RFD may predict performance in shot put tests that are commonly used by track and field throwers.
MFCV is closely associated with muscle fiber % CSA. RFD and jumping power are associated with the propagation of the action potentials along the muscle fibers. This link is regulated by the size and the distribution of type II, and especially type IIx muscle fibers.
The aim of the study was to compare the effects of compound vs. complex resistance training on strength, high-speed movement performance, and muscle composition. Eighteen young men completed compound (strength and power sessions on alternate days) or complex training (strength and power sets within a single session) 3 times per week for 6 weeks using bench press, leg press, Smith machine box squat, and jumping exercises. Pre- and posttraining, jumping and throwing performance and maximum bench press, leg press, and Smith machine box squat strength were evaluated. The architecture of vastus lateralis and gastrocnemius muscle was assessed using ultrasound imaging. Vastus lateralis morphology was assessed from muscle biopsies. Jumping (4 ± 3%) and throwing (9 ± 8%) performance increased only with compound training (p < 0.02). Bench press (5 vs. 18%), leg press (17 vs. 28%), and Smith machine box squat (27 vs. 35%) strength increased after both compound and complex training. Vastus lateralis thickness and fascicle angle and gastrocnemius fascicle angle were increased with both compound and complex training. Gastrocnemius fascicle length decreased only after complex training (-11.8 ± 9.4%, p = 0.006). Muscle fiber cross-sectional areas increased only after complex training (p ≤ 0.05). Fiber type composition was not affected by either intervention. These results suggest that short-term strength and power training on alternate days is more effective for enhancing lower-limb and whole-body power, whereas training on the same day may induce greater increases in strength and fiber hypertrophy.
The purpose of the study was to investigate the effects of power training with light vs. heavy loads during the tapering phases of a double periodized training year on track and field throwing performance. Thirteen track and field throwers aged 16-26 years followed 8 months of systematic training for performance enhancement aiming at 2 tapering phases during the winter and the spring competition periods. Athletes performed tapering with 2 different resistance training loads (counterbalanced design): 7 athletes used 30% of 1 repetition maximum (1RM) light-load tapering (LT), and 6 athletes used the 85% of 1RM heavy-load tapering (HT), during the winter tapering. The opposite was performed at the spring tapering. Before and after each tapering, throwing performance, 1RM strength, vertical jumping, rate of force development (RFD), vastus lateralis architecture, and rate of perceived exertion were evaluated. Throwing performance increased significantly by 4.8 ± 1.0% and 5.6 ± 0.9% after LT and HT, respectively. Leg press 1RM and squat jump power increased more after HT than LT (5.9 ± 3.2% vs. -3.4 ± 2.5%, and 5.1 ± 2.4% vs. 0.9 ± 1.4%, respectively, p ≤ 0.05). Leg press RFD increased more in HT (38.1 ± 16.5%) compared with LT (-2.9 ± 6.7%), but LT induced less fatigue than HT (4.0 ± 1.5 vs. 6.7 ± 0.9, p ≤ 0.05). Muscle architecture was not altered after either program. These results suggest that performance increases similarly after tapering with LT or HT in track and field throwers, but HT leads to greater increases in strength, whole body power, and RFD.
Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P < 0.05) and REC (type I: 10.0 ± 2.7%, type IIA: 14.8 ± 4.3% type IIX: 20.8 ± 6.0%, P < 0.05). In contrast, RFD decreased and fascicle angle increased (P < 0.05) only after REC. Capillary density and estimated aerobic capacity increased (P < 0.05) only after REC. These results suggest that high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.