We propose a computational method (with acronym ALDI) for sampling from a given target distribution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covariance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require taking the inverse or square root of the empirical covariance matrix, which enables application to high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of nondegeneracy and ergodicity. Furthermore, we study its connections to diffusion on Riemannian manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a gradient-free approximation in the spirit of the ensemble Kalman filter. A computational comparison between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse problem.
In this work, we establish L 2 -exponential convergence for a broad class of Piecewise Deterministic Markov Processes recently proposed in the context of Markov Process Monte Carlo methods and covering in particular the Randomized Hamiltonian Monte Carlo [21,11], the Zig-Zag process [6] and the Bouncy Particle Sampler [51,12]. The kernel of the symmetric part of the generator of such processes is non-trivial, and we follow the ideas recently introduced in [20, 21] to develop a rigorous framework for hypocoercivity in a fairly general and unifying setup, while deriving tractable estimates of the constants involved in terms of the parameters of the dynamics. As a by-product we characterize the scaling properties of these algorithms with respect to the dimension of classes of problems, therefore providing some theoretical evidence to support their practical relevance.
Optimal control of diffusion processes is intimately connected to the problem of solving certain Hamilton–Jacobi–Bellman equations. Building on recent machine learning inspired approaches towards high-dimensional PDEs, we investigate the potential of iterative diffusion optimisation techniques, in particular considering applications in importance sampling and rare event simulation, and focusing on problems without diffusion control, with linearly controlled drift and running costs that depend quadratically on the control. More generally, our methods apply to nonlinear parabolic PDEs with a certain shift invariance. The choice of an appropriate loss function being a central element in the algorithmic design, we develop a principled framework based on divergences between path measures, encompassing various existing methods. Motivated by connections to forward-backward SDEs, we propose and study the novel log-variance divergence, showing favourable properties of corresponding Monte Carlo estimators. The promise of the developed approach is exemplified by a range of high-dimensional and metastable numerical examples.
In this paper we introduce and analyse Langevin samplers that consist of perturbations of the standard underdamped Langevin dynamics. The perturbed dynamics is such that its invariant measure is the same as that of the unperturbed dynamics. We show that appropriate choices of the perturbations can lead to samplers that have improved properties, at least in terms of reducing the asymptotic variance. We present a detailed analysis of the new Langevin sampler for Gaussian target distributions. Our theoretical results are supported by numerical experiments with non-Gaussian target measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.