Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.
Planning of operations, such as routing of vehicles, is often performed repetitively in rea-world settings, either by humans or algorithms solving mathematical problems. While humans build experience over multiple executions of such planning tasks and are able to recognize common patterns in different problem instances, classical optimization algorithms solve every instance independently. Machine learning (ML) can be seen as a computational counterpart to the human ability to recognize patterns based on experience. We consider variants of the classical Vehicle Routing Problem with Time Windows and Capacitated Vehicle Routing Problem, which are based on the assumption that problem instances follow specific common patterns. For this problem, we propose a ML-based branch and price framework which explicitly utilizes those patterns. In this context, the ML models are used in two ways: (a) to predict the value of binary decision variables in the optimal solution and (b) to predict branching scores for fractional variables based on full strong branching. The prediction of decision variables is then integrated in a node selection policy, while a predicted branching score is used within a variable selection policy. These ML-based approaches for node and variable selection are integrated in a reliability-based branching algorithm that assesses their quality and allows for replacing ML approaches by other (classical) better performing approaches at the level of specific variables in each specific instance. Computational results show that our algorithms outperform benchmark branching strategies. Further, we demonstrate that our approach is robust with respect to small changes in instance sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.