To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring.
To support New Zealand's food safety monitoring, estimates of the current population exposure to ionizing radiation through diet are needed. To calculate the committed dose from radionuclide activities in the food chain, dietary modeling was undertaken for different age and gender groupings of the New Zealand population. Based on a published survey of radionuclide activity concentrations in the New Zealand diet, deterministic and semiprobabilistic models were constructed to derive estimates of the effective dose via the diet. Deterministic estimated annual doses across the different age and gender groupings ranged from a minimum of 48 to 66 μSv/year for teenage girls to a maximum of 126 to 152 μSv/year for adult males. Polonium-210 was the main contributor to ingested dose, with anthropogenic radionuclides contributing very little. For adults, seafood represented the most important source of exposure, with the contribution from this source decreasing for younger age groups. Results of the semiprobabilistic model identified a range of possible ingested doses, with 2.5 to 97.5th percentile ranges of 0.01 to 1.44 μSv/day for adults and 0.02 to 1.84 μSv/day for children. Estimated doses to the New Zealand population show similarities to those of other countries and fall within the expected global range. The current level of exposure to ionizing radiation in the diet does not represent an elevated health risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.