We present a novel approach to prepare ultrathin, biocompatible films based on cross-linking of multi-functionalized, star-branched poly(ethylene glycols) (STAR-PEGs) with tunable film thicknesses of 4-200 nm. A two-component mixture of amine- and epoxy-terminated four-arm STAR-PEGs (MN=2000 g/mol) was spin-coated on a flat substrate. Gentle heating induced an extensive chemical cross-linking of the macromonomers, resulting in a stable, hydrogel-like film with a density close to that of bulk PEG material. The cross-linking process could be monitored in situ, exhibiting the expected kinetics. The films revealed pronounced swelling behavior, which was fully reversible and could be precisely controlled. Additionally, they provided a high affinity to citrate-stabilized gold nanoparticles (AuNP) that could be adsorbed with high densities into the PEG matrix from an aqueous solution. These novel PEG/AuNP composite films offer interesting and potentially useful optical properties. The adsorption could also be performed in a lithographic fashion, resulting in AuNP patterns imbedded into the PEG matrix.
The ability to reversibly control the interactions between the extracellular matrix (ECM) and cell surface receptors such as integrins would allow one to investigate reciprocal signaling circuits between cells and their surrounding environment. Engineering microstructured culture substrates functionalized with switchable molecules remains the most adopted strategy to manipulate surface adhesive properties, although these systems exhibit limited reversibility and require sophisticated preparation procedures. Here, we report a straightforward protocol to fabricate biofunctionalized micropatterned gold nanoarrays that favor one-dimensional cell migration and function as plasmonic nanostoves to physically block and orient the formation of new adhesion sites. Being reversible and not restricted spatiotemporally, thermoplasmonic approaches will open new opportunities to further study the complex connections between ECM and cells.
In this study, we analyzed the effect of electron irradiation on highly cross-linked and nanometer-thin poly(ethylene glycol) (PEG) films and, in combination with electron beam lithography (EBL), tested the possibility to prepare different patterns on their basis. Using several complementary spectroscopic techniques, we demonstrated that electron irradiation results in significant chemical modification and partial desorption of the PEG material. The initially well-defined films were progressively transformed in carbon-enriched and oxygen-depleted aliphatic layers with, presumably, still a high percentage of intermolecular cross-linking bonds. The modification of the films occurred very rapidly at low doses, slowed down at moderate doses, and exhibited a leveling off behavior at higher doses. On the basis of these results, we demonstrated the fabrication of wettability patterns and sculpturing complex 3D microstructures on the PEG basis. The swelling behavior of such morphological patterns was studied in detail, and it was shown that, in contrast to the pristine material, irradiated areas of the PEG films reveal an almost complete absence of the hydrogel-typical swelling behavior. The associated sealing of the irradiated areas allows a controlled deposition of objects dissolved in water, such as metal nanoparticles or fluorophores, into the surrounding, pristine areas, resulting in the formation of nanocomposite patterns. In contrast, due to the distinct protein-repelling properties of the PEG films, proteins are exclusively adsorbed onto the irradiated areas. This makes such films a suitable platform to prepare protein-affinity patterns in a protein-repelling background.
Extremely elastic and highly stable nanomembranes of variable thickness (5-350 nm) made completely of poly(ethylene glycol) are prepared by a simple procedure. The membranes exhibit distinct biorepulsive and hydrogel properties. They offer new possibilities for applications such as supports in transmission electron microscopy, matrices for inorganic nanoparticles, and pressure-sensitive elements for sensors.
We present the fabrication of freestanding, biocompatible, and ultrathin membranes on the basis of selfassembled monolayers (SAMs) of 4′-nitro-1,1′-biphenol-4thiol (NBPT) on an Au(111) support. In the first step, NBPT SAMs were extensively cross-linked by exposure to low-energy electrons, resulting in a mechanically and thermally stable monolayer. Simultaneously, the terminal nitro groups of the NBPT molecules were converted to reactive amine moieties to which, in the second step, epoxy-functionalized poly(ethylene glycols) (PEG) were coupled. As far as the thickness of the coupled PEG overlayer exceeded ∼3 nm, as monitored by ellipsometry and X-ray photoelectron spectroscopy, the resulting assembly became protein-resistant, without losing this property after separation from the substrate as a freestanding membrane (third step). The use of such membranes as supports in transmission electron microscopy studies may improve essentially the resolution and structural reliability of such experiments in their specific application to sensitive biological targets. Whereas the ultimate thinness (<5 nm) and low atomic number character of the SAM-based membranes guarantee high imaging quality, their protein-repelling properties ensure the lack of protein denaturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.