Brain-computer interface (BCI) systems have been used primarily to provide communication for persons with severe movement disabilities. This paper presents a new system that extends BCI technology to a new patient group: persons diagnosed with stroke. This system, called recoveriX, is designed to detect changes in motor imagery in real-time to help monitor compliance and provide closed-loop feedback during therapy. We describe recoveriX and present initial results from one patient.
In this experiment, we demonstrate a suite of hybrid Brain-Computer Interface (BCI)-based paradigms that are designed for two applications: assessing the level of consciousness of people unable to provide motor response and, in a second stage, establishing a communication channel for these people that enables them to answer questions with either 'yes' or 'no'. The suite of paradigms is designed to test basic responses in the first step and to continue to more comprehensive tasks if the first tests are successful. The latter tasks require more cognitive functions, but they could provide communication, which is not possible with the basic tests. All assessment tests produce accuracy plots that show whether the algorithms were able to detect the patient's brain's response to the given tasks. If the accuracy level is beyond the significance level, we assume that the subject understood the task and was able to follow the sequence of commands presented via earphones to the subject. The tasks require users to concentrate on certain stimuli or to imagine moving either the left or right hand. All tasks are designed around the assumption that the user is unable to use the visual modality, and thus, all stimuli presented to the user (including instructions, cues, and feedback) are auditory or tactile.
Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients’ movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS. After 10 sessions of recoveriX training, one stroke patient partially regained control of dorsiflexion in her paretic wrist. A controlled group study is planned with a new version of the recoveriX system, which will use a new FES system and an avatar instead of bar feedback.
Fractal dimensions of data series, particularly time series can be estimated very well by using Higuchi's algorithm. Without phase space constructions, the fractal dimension of a one-dimensional data stream is calculated. Higuchi's method is well accepted and widely applied, because it is very reliable and easy to implement. A generalization of the genuine 1D algorithm to two dimensions would be desirable in order to investigate digital images. In this study, we propose several 2D generalization algorithms and evaluate differences between them. Additionally, a comparison to previously published pseudo 2D generalizations, and to the Fourier and the Blanket method are presented. The algorithms were tested on artificially generated grey value and red-green-blue colour images. It turned out that the proposed 2D generalized Higuchi algorithms are very robust, but differences in between the generalizations as well as differences to the pseudo 2D algorithms are astonishingly small.
In conventional rehabilitation therapy to help persons with stroke recover movement, there is no objective way to evaluate each patient's motor imagery. Thus, patients may receive rewarding feedback even when they are not complying with the task instructions to imagine specific movements. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to evaluate movement imagery in real-time, and use this information to control feedback presented to the patient. We introduce this approach and the RecoveriX system, a hardware and software platform for PAS. We then present initial results from two stroke patients who used RecoveriX, followed by future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.