We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.
The separation of substances into different phases is ubiquitous in nature and important scientifically and technologically. This phenomenon may become drastically different if the species involved, whether molecules or supramolecular assemblies, interconvert. In the presence of an external force large enough to overcome energetic differences between the interconvertible species (forced interconversion), the two alternative species will be present in equal amounts, and the striking phenomenon of steady-state, restricted phase separation into mesoscales is observed. Such microphase separation is one of the simplest examples of dissipative structures in condensed matter. In this work, we investigate the formation of such mesoscale steady-state structures through Monte Carlo and molecular dynamics simulations of three physically distinct microscopic models of binary mixtures that exhibit both equilibrium (natural) interconversion and a nonequilibrium source of forced interconversion. We show that this source can be introduced through an internal imbalance of intermolecular forces or an external flux of energy that promotes molecular interconversion, possible manifestations of which could include the internal nonequilibrium environment of living cells or a flux of photons. The main trends and observations from the simulations are well captured by a nonequilibrium thermodynamic theory of phase transitions affected by interconversion. We show how a nonequilibrium bicontinuous microemulsion or a spatially modulated state may be generated depending on the interplay between diffusion, natural interconversion, and forced interconversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.