Grinding kinematics is one of the main mechanisms affecting the behaviour and efficiency of the creep-feed grinding process; it is thus essential in understanding the interplay of its parameters in the material removal. This paper presents an overview of non-traditional process parameters, such as the apparent area of the removed material, the grinding force engagement angle, the ratio of normal-to-tangential grinding force, as well as the ratio between the depth of cut and the wheel diameter. The kinematic aspects of creep-feed grinding processes are illustrated in three different case studies for creep-feed grinding of turbine blades, gears and broaches, using highly porous, vitrified, alumina-oxide wheels at low speeds. Details about the experimental work, especially with regard to analysis and validation, are not included. Based on the case studies, however, some practical guidelines for improving process efficiency in terms of productivity and quality are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.