The study focuses on the effect of low-frequency noise on resistance converter of teraommeters to test cable insulation. A mathematical pendulum was used to simulate low frequency electromagnetic interference. It was found that the greatest effect is exerted by dynamic effects of electrostatic charges that accumulate on the printed circuit board, electronic components, structural elements of the resistance-to-voltage converter, and on the test cable sheath. The effect of constant and alternating magnetic fields on measurement of resistance of insulating materials is insignificant.
The paper considers a teraohmmeter resistance converter to monitor cable insulation with an additional input amplifier that emits a low-frequency interference signal. Adaptive algorithms for a double-channel converter circuit to compensate for low-frequency interference are proposed. There are considered algorithms using minimax criteria and linear approximation method for estimation of interference influence. It is shown classification of algorithms according to industrial frequency interference filtering method and signal observation interval. There were investigated two ways of interference application: step signal from a DC voltage source up to 300 V and fading harmonic signal from an AC voltage source and amplifier up to 300 V. A doublechannel circuit of the resistance-to-voltage converter is found to provide a 2-fold increase in the signal-tonoise ratio in comparison with a single-channel circuit. It is shown that the maximum deviation of readings for the single-channel circuit exceeds 20 % (up to 32 %) in short-term exposure to interference with amplitude of up to 300 V. At the same time, the maximum deviation for the double-channel circuit can attain 17 %, but it does not exceed 20 %. According to GOST 3345–76, the insulation resistance measuring error in the range of 10 GΩ to 100 TΩ should not exceed 20 %.The advantage of the proposed double-channel converter is the possibility to develop new algorithms to eliminate the dependence of readings on interference effects.
Theoretical and experimental studies were conducted to investigate the impact of the cable capacitance during measurements of insulation resistance on the fast response time of a resistance-to-voltage converter. From a comparison of the results of simulation with the data obtained during the experiments, it was determined that the dependence characteristics of the settling time of resistance under measurement on the capacitance are identical to the analogous characteristics of electronic components of the resistance-to-voltage converter. It was experimentally proven that using T-shaped feedback in the resistance-to-voltage converter during the cable insulation resistance measurements reduces the settling time of the data by 1–3 times in comparison with a classical feedback system. Furthermore, when using the optimal parameters, the settling time of the resistance-to-voltage converter with T-shaped feedback depends to a lesser degree on the capacitance of the object under control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.