Microsteam turbine implementation for combustion engine exhaust gases heat recovery and subsequent acquisition of additional power is being investigated in many developed countries of the world. The results of such studies have already found application in some trucks. But this type of turbines is very weak in the Russian market. Turbine installation behind the combustion engine works under conditions of low volumetric flow of work fluid. This leads to a decrease in the height of the blade and vane wheels flow passage and an increase of the relative values of the gaps in the seals which are the reasons for the growth of the working fluid leakages. High degree of pressure reduction when selecting single-stage turbine leads to a supersonic velocity in the flow passage and an increase of the losses due to powerful shock waves. The efficiency of the turbine installation under these operating conditions is low and requires additional investigations. In this work, the working fluids which can give the greatest efficiency of the turbine installation were investigated. It was shown that not only thermodynamic but also hazardous and economic parameters must be taken into consideration. Working fluid with the high thermodynamic efficiency was compared with the one that profitable from economic point of view. The most appropriate substance was chosen and implemented in the microsteam turbine. The turbine stage which allows increasing economy and ecological compatibility of the combustion engine was developed and optimized by analytical methods.
The article is devoted to the investigation and development of microsteam turbine unit of the LPI design for utilization of heat of exhaust gases of internal combustion engines. This installation will reduce the world carbon dioxide emissions, as well as add useful power for the needs of the consumer. Efficiency and environmental friendliness of the engine will increase. The article discusses development of the main directions of improvement of high-loaded steps of LPI, expansion of modern outlooks on the directions of MRI development and the use of LPI steps in the systems of heat recovery of exhaust gases of the internal combustion engine. The possibility to utilize the heat of exhaust gases of internal combustion engines by means of a turbine unit and the subsequent receipt of additional useful capacities are investigated in many developed countries of the world. Germany, Sweden, Japan, PRC and other leading countries in the automotive industry are intensively conducting works in this direction. The results of such studies have already found application in some freight cars. In the Russian market, this type of turbine is spread very weakly. Turbine unit behind the internal combustion engine works in conditions of low volumetric consumption of the working fluid, which leads to a decrease in the heights of the flow parts of the guides and working grids, because of which the relative gaps in the seals increase. This leads to the growth of leakage of the working fluid. On the other hand, a high degree of pressure reduction when choosing single-stage turbines leads to supersonic
Improving the technical, economic, and environmental performance of the power plant is the most important direction for improving the characteristics of the ship’s propulsive complex. This issue can be solved most effectively by improving the design, repair, and maintenance of the fuel supply system, which significantly affects the quality of the fuel equipment and determines the working process of the steam boiler. Performance indicators of fuel equipment are determined not only by the stability of its design and adjustment parameters and parameters of the fuel supply process, but also by the physical and chemical composition of the fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.