This article discusses the problems of creating an integrated system for monitoring the technical condition of highly responsible helicopter units, and analyzed options for its creation. Fiber-optical technology is considered as a technology, on the basis of which it is possible to build an integrated system, since this technology makes it possible to measure various physical parameters such as vibration, deformation, temperature, acoustic emission and other parameters, and due to the miniature dimensions of the fiber-optic light guide. It can be built into the PCM design, which is a relevant factor due to the growth use of PCM in the design and manufacture of helicopters. The results of bench and flight tests of helicopter pilot and rotor blades with fasteners using fiber optic deformation sensors based on a Bragg fiber grille demonstrate the fundamental possibility of creating a system for monitoring the technical condition of helicopter rotors using fiber optic sensors .Also, there are examples of creating other elements of an integrated monitoring system based on the use of fiber-optic technology, such as a system for signaling the breakdown of air flow and flutter on the helicopter rotor blades, a system for measuring the weight and alignment of helicopter cargo and a system for monitoring the technical condition of the airframe.
The article discusses fiber-optic sensors (FOS) based on the Bragg gratings for measuring systems for diagnostics of stress-strain state. Currently, such diagnostic systems are widely used in construction, industry and civil engineering. The physical principle of deformation diagnostics using FOS. The issues of mounting the sensor on the measured area (detail) are separately discussed. The principle of processing the hardware and software of sensors based on Bragg gratings is described. Research method - bench experiments that were carried out on an equal-deformation beam in order to evaluate the change in the width of the reflected FOS peak at different lengths recorded by the Bragg gratings in order to determine the optimal one. The change in the spectrum of the reflected peak under various deforming influences was monitored. Based on the results obtained, recommendations are made on the use of gratings of various lengths in the diagnostic systems for the stress-strain state of parts and assemblies for civil engineering tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.