We have demonstrated previously that mammalian sexual differentiation requires both the GATA4 and FOG2 transcriptional regulators to assemble the functioning testis. Here we have determined that the sexual development of female mice is profoundly affected by the loss of GATA4-FOG2 interaction. We have also identified the Dkk1 gene, which encodes a secreted inhibitor of canonical β-catenin signaling, as a target of GATA4-FOG2 repression in the developing ovary. The tissue-specific ablation of the β-catenin gene in the gonads disrupts female development. In Gata4; Dkk1 -/-embryos, the normal ovarian gene expression pattern is partially restored. Control of ovarian development by the GATA4-FOG2 complex presents a novel insight into the cross-talk between transcriptional regulation and extracellular signaling that occurs in ovarian development.
Assembly of functioning testis and ovary requires a GATA4-FOG2 transcriptional complex. To define the separate roles for GATA4 and FOG2 proteins in sexual development of the testis we have ablated the corresponding genes in somatic gonadal cells. We have established that GATA4 is required for testis differentiation, for the expression of Dmrt1 gene, and for testis cord morphogenesis. While Sf1Cre-mediated excision of Gata4 permitted normal expression of most genes associated with embryonic testis development, gonadal loss of Fog2 resulted in an early partial block in male pathway and sex reversal. We have also determined that testis sexual differentiation is sensitive to the timing of GATA4 loss during embryogenesis. Our results now demonstrate that these two genes also have non-overlapping essential functions in testis development.
We have previously established an in vivo requirement for GATA4 and FOG2 transcription factors in sexual differentiation. Fog2 null mouse fetuses or fetuses homozygous for a targeted mutation in Gata4 (Gata4(ki)), which cripples the GATA4-FOG2 interaction, exhibit a profound and early block in testis differentiation in both sexes. Others have shown that XX mice with the Ods transgenic insertion or the Wt1-Sox9 YAC transgene overexpress the testis differentiation gene, Sox9. Thus, these XX animals undergo dominant sex reversal by developing into phenotypically normal, but sterile, males. Now we have determined that Fog2 haploinsufficiency prevents (suppresses) this dominant sex reversal and Fog2+/-Wt1-Sox9 or Ods XX animals develop normally--as fertile females. The suppression of sex reversal in Fog2 heterozygous females results from approximately 50% downregulation of the expression from the transgene-associated allele of Sox9. The GATA4/FOG2-dependent sex reversal observed in the transgenic XX gonads has to rely on gene targets other than the Y chromosome-linked Sry gene. Importantly, Fog2 null or Gata4(ki/ki) embryos (either XX or XY) fail to express detectable levels of Sox9 despite carrying the Ods mutation or Wt1-Sox9 transgene. Fog2 haploinsufficiency leads to a decreased amount of SOX9-positive cells in XY gonads. We conclude that FOG2 is a limiting factor in the formation of a functional GATA4/FOG2 transcription complex that is required for Sox9 expression during gonadogenesis.
Sex determination in mammals requires interaction between the transcription factor GATA4 and its cofactor FOG2. We have recently described the function of both proteins in testis development beyond the sex determination stage; their roles in the postnatal ovary, however, remain to be defined. Here, we use gene targeting in mice to determine the requirement of GATA4 and FOG2 in ovarian development and folliculogenesis. The results from this study identify an essential role of the GATA4 protein in the ovarian morphogenetic program. We show that in contrast to the sex determination phase, which relies on the GATA4-FOG2 complex, the subsequent regulation of ovarian differentiation is dependent upon GATA4 but not FOG2. The loss of Gata4 expression within the ovary results in impaired granulosa cell proliferation and theca cell recruitment as well as fewer primordial follicles in the ovarian cortex, causing a failure in follicular development. Preantral follicular atresia is observed within the few follicles that develop despite Gata4 deficiency. The depletion of the follicular pool in GATA4 deficient ovary results in the formation of ovarian cysts and sterility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.