The fragmentation mechanism of the acylpentamine toxins 1-4 found in the venom of the spider Agelenopsis aperta has been investigated in detail. To identify the origin of the two doublets of unexpected fragment ions at m/z 129/112 and m/z 115/98, three synthetic 15N-labeled analogs 5-7 have been prepared and subjected to CID fragmentation on a triple quadrupole mass spectrometer. It appears that the unexpected doublet of fragment ions arises from an internal portion of the polyamine backbone after either a transaminative Zip reaction or a sequential fragmentation of the quasi-molecular ion. The second option has been proven by in-source CID experiments. The detailed knowledge of acylpentamine fragmentation mechanisms is essential for the correct characterization of isomeric compounds, particularly for coeluting compounds within complex mixtures such as spider venoms.
Dedicated to Prof. Dr. Manfred Hesse on the occasion of his retirement A recently developed new and divergent approach for the solid-phase synthesis of polyamines and polyamine derivatives was extended to the preparation of linear pentamines, and it was applied to the synthesis of three quartets of isomeric polyamine spider toxins. The twelve synthetic acylpolyamines were investigated by HPLC-UV(DAD)-MS and HPLC-UV(DAD)-MS/MS and compared with the natural products in the complex mixture of the venom of Agelenopsis aperta. The comparative investigation supported the structures and assignments of seven previously found toxins and allowed the identification of an additional five polyamine derivatives in the natural sample. The MS/MS study of the isomerically pure polyamine derivatives revealed furthermore a characteristic pattern for the fragmentation of these compounds, which can possibly be used as evidence in the trace analysis of other polyamine derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.