During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system.
Histological and ultrastructural investigations revealed three different multicellular skin gland types in the salamandrid Pleurodeles waltl. The mucous glands are small, with one layer of secretory cells surrounding a central lumen; they produce the viscous and slippery mucus film that has various functions in amphibians. The serous glands can be divided based on their histological and ultrastructural characters into the granular gland Type I (GGI) and the granular gland Type II (GGII). The first type (GGI) is moderately sized and distributed throughout the body surface, with higher concentrations in the parotoid and back regions. In contrast, the second type (GGII) is very large (for Pleurodeles) and was found only in the tail, with highest concentration in the tail dorsum. Both granular gland types contain mainly proteinaceous materials but differ in their morphological features including size, shape, cellular organization and vesicle distribution, vesicle size and vesicle shape. Both GGI and GGII are especially concentrated in body parts that are presented to an attacking predator and are hypothesized to produce repellent to poisonous substances to thwart potential aggressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.