Patients who receive ≥ 3 units of blood after free tissue transfer for HNC had a significantly increased risk of death after controlling for age, preoperative hemoglobin and albumin, cancer stage, and adverse pathologic features. Increased transfusions are also associated with higher wound infection rates. The increased tendency to transfuse free flap patients in order to maintain a threshold hematocrit may have a detrimental impact on survival and wound infections and should be revisited.
Background Cancer vaccines require adjuvants to induce effective immune responses; however, there is no consensus on optimal adjuvants. We hypothesized that toll-like receptor (TLR)3 agonist polyICLC or TLR4 agonist lipopolysaccharide (LPS), combined with CD4 T cell activation, would support strong and durable CD8 + T cell responses, whereas addition of an incomplete Freund’s adjuvant (IFA) would reduce magnitude and persistence of immune responses. Patients and methods Participants with resected stage IIB-IV melanoma received a vaccine comprised of 12 melanoma peptides restricted by Class I MHC (12MP), plus a tetanus helper peptide (Tet). Participants were randomly assigned 2:1 to cohort 1 (LPS dose-escalation) or cohort 2 (polyICLC). Each cohort included 3 subgroups (a-c), receiving 12MP + Tet + TLR agonist without IFA (0), or with IFA in vaccine one (V1), or all six vaccines (V6). Toxicities were recorded (CTCAE v4). T cell responses were measured with IFNγ ELIspot assay ex vivo or after one in vitro stimulation (IVS). Results Fifty-three eligible patients were enrolled, of which fifty-one were treated. Treatment-related dose-limiting toxicities (DLTs) were observed in 0/33 patients in cohort 1 and in 2/18 patients in cohort 2 (11%). CD8 T cell responses to 12MP were detected ex vivo in cohort 1 (42%) and in cohort 2 (56%) and in 18, 50, and 72% for subgroups V0, V1, and V6, respectively. T cell responses to melanoma peptides were more durable and of highest magnitude for IFA V6. Conclusions LPS and polyICLC are safe and effective vaccine adjuvants when combined with IFA. Contrary to the central hypothesis, IFA enhanced T cell responses to peptide vaccines when added to TLR agonists. Future studies will aim to understand mechanisms underlying the favorable effects with IFA. Trial registration The clinical trial Mel58 was performed with IRB (#15781) and FDA approval and is registered with Clinicaltrials.gov on April 25, 2012 (NCT01585350). Patients provided written informed consent to participate. Enrollment started on June 24, 2012. Electronic supplementary material The online version of this article (10.1186/s40425-019-0625-x) contains supplementary material, which is available to authorized users.
Interprofessional care is critical for patients at the end of life (EOL), but programs to teach communication skills to medical and nursing students are rare. The aims of this study were to determine whether an interprofessional workshop improves (1) student attitudes toward teamwork and (2) self-efficacy for communicating in difficult situations. Nursing and medical students attended a workshop with collaborative role play of an EOL conversation. Before the workshop, students showed different attitudes toward teamwork and collaboration and varying levels of confidence about communication skills. After the workshop, both groups reported more positive attitudes toward teamwork but a mixed picture of confidence in communication. Experiential interprofessional education workshops enhance perceptions about the benefits of teamwork, but further teaching and evaluation methods are needed to maximize the effectiveness.
BackgroundPhosphorylated peptides presented by MHC molecules represent a new class of neoantigens expressed on cancer cells and recognized by CD8 T-cells. These peptides are promising targets for cancer immunotherapy. Previous work identified an HLA-A*0201-restricted phosphopeptide from insulin receptor substrate 2 (pIRS2) as one such target. The purpose of this study was to characterize a second phosphopeptide, from breast cancer antiestrogen resistance 3 (BCAR3), and to evaluate safety and immunogenicity of a novel immunotherapic vaccine comprising either or both of these phosphorylated peptides.MethodsPhosphorylated BCAR3 protein was evaluated in melanoma and breast cancer cell lines by Western blot, and recognition by T-cells specific for HLA-A*0201-restricted phosphorylated BCAR3 peptide (pBCAR3126-134) was determined by51Cr release assay and intracellular cytokine staining. Human tumor explants were also evaluated by mass spectrometry for presentation of pIRS2 and pBCAR3 peptides. For the clinical trial, participants with resected stage IIA–IV melanoma were vaccinated 6 times over 12 weeks with one or both peptides in incomplete Freund’s adjuvant and Hiltonol (poly-ICLC). Adverse events (AEs) were coded based on National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) V.4.03, with provision for early study termination if dose-limiting toxicity (DLT) rates exceeded 33%. The enrollment target was 12 participants evaluable for immune response to each peptide. T-cell responses were assessed by interferon-γ ELISpot assay.ResultspBCAR3 peptides were immunogenic in vivo in mice, and in vitro in normal human donors, and T-cells specific for pBCAR3126-134controlled outgrowth of a tumor xenograft. The pIRS21097-1105peptide was identified by mass spectrometry from human hepatocellular carcinoma tumors. In the clinical trial, 15 participants were enrolled. All had grade 1 or 2 treatment-related AEs, but there were no grade 3–4 AEs, DLTs or deaths on study. T-cell responses were induced to the pIRS21097-1105peptide in 5/12 patients (42%, 90% CI 18% to 68%) and to the pBCAR3126-134peptide in 2/12 patients (17%, 90% CI 3% to 44%).ConclusionThis study supports the safety and immunogenicity of vaccines containing the cancer-associated phosphopeptides pBCAR3126-134and pIRS21097-1105, and the data support continued development of immune therapy targeting phosphopeptides. Future studies will define ways to further enhance the magnitude and durability of phosphopeptide-specific immune responses.Trial registration numberNCT01846143
Purpose Genetic and preclinical studies have implicated fibroblast growth factor receptor (FGFR) signaling in the pathogenesis of adenoid cystic carcinoma (ACC). Dovitinib, a suppressor FGFR activity, may be active in ACC. Methods In a two-stage phase II study, 35 patients with progressive ACC were treated with dovitinib 500mg orally for 5 of 7 days continuously. The primary endpoints were objective response rate (ORR) and change in tumor growth rate (TGR). Progression-free survival (PFS), overall survival (OS), metabolic response, biomarker and QOL were secondary endpoints. Results Of thirty-four evaluable patients, two (6%) had a partial response and 22 (65%) had stable disease >4 months. Median PFS was 8.2 months and OS was 20.6 months. The slope of the overall TGR fell from 1.95 to 0.63 on-treatment (p<0.001). Toxicity was moderate; 63% of patients developed grade 3–4 toxicity, 94% required dose modifications, and 21% stopped treatment early. An early metabolic response based on 18FDG-PET scans was seen in 3/15 patients but did not correlate with RECIST response. MYB gene translocation was observed and significantly correlated with over-expression of MYB but did not correlate with FGFR1 phosphorylation or clinical response to dovitinib. Conclusion Dovitinib produced few objective responses in patients with ACC but did suppress the TGR with a PFS that compares favorably to those reported with other targeted agents. Future studies of more potent and selective FGFR inhibitors in biomarker-selected patients will be required to determine if FGFR signaling is a valid therapeutic target in ACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.