Starmerella bacillaris (synonym Candida zemplinina) is an important non-Saccharomyces yeast in winemaking with valuable oenological properties, accompanying Saccharomyces species in sweet wine fermentation, and has also been suggested for application as combined starter culture in dry or sweet wines. In this study, the major metabolites and nitrogen utilization of these yeasts are evaluated in the musts with high or extremely high sugar concentration. The change in the metabolic footprint of Saccharomyces cerevisiae, Saccharomyces uvarum and Starmerella bacillaris strains was compared when they were present as pure cultures in chemically defined grape juice medium with 220 and 320 g/L of sugar, to represent a fully matured and an overripe grape. Surprisingly, the extreme sugar concentration did not result in a considerable change in the rate of sugar consumption; only a shift of the sugar consumption curves could be noticed for all species, especially for Starmerella bacillaris. At the extreme sugar concentration, Starmerella bacillaris showed excellent glycerol production, moderate nitrogen demand together with a noticeable proline utilisation. The change in the overall metabolite pattern of Starmerella bacillaris allowed clear discrimination from the change of the Saccharomyces species. In this experiment, the adequacy of this non-Saccharomyces yeast for co-fermentation in juices with high sugar concentration is highlighted. Moreover, the results suggest that Starmerella bacillaris has a more active adaptation mechanism to extremely high sugar concentration.
Guignardia bidwellii, indigenous to North America, is a significant pathogen of grapes long known in Hungary, infecting only the growing green parts of the vine (leaves, petioles, shoots, and bunches). In the absence of adequate plant protection and extreme weather conditions such as a predominantly humid, warm year, black rot of grapes can be expected. The pathogen can cause high yield losses due to grape rot and reduce wine quality if the infection is severe. The evolution of certain biogenic amine compounds were investigated under the influence of grape black rot. The results obtained showed that they were present in low concentrations from an oenological point of view. Polyphenol composition was consistent with the literature, blackening affected mainly the concentration of catechin. Black rot fungus does not produce β-glucosidase enzyme. In terms of resveratrol content, black rot has no particular effect. However, like Botrytis cinerea, it produces glycerol and, proportionally, gluconic acid in lower concentrations. It can be concluded that black rot of grapes does not cause health problems when introduced into wine processing.
The aim of this study was to find out what kind of “Bianca” wine could be produced when using organic yeast, what are the dynamics of the resulting alcoholic fermentation, and whether this method is suitable for industrial production as well. Due to the stricter rules and regulations, as well as the limited amount and selection of the permitted chemicals, resistant, also known as interspecific or innovative grape varieties, can be the ideal basic materials of alternative cultivation technologies. Well-designed analytical and organoleptic results have to provide the scientific background of resistant varieties, as these cultivars and their environmentally friendly cultivation techniques could be the raw materials of the future. The role of the yeast in wine production is crucial. We fermented wines from the “Bianca” juice samples three times where model chemical solutions were applied. In our research, we aimed to find out how organic yeast influenced the biogenic amine formation of three important compounds: histamine, tyramine, and serotonin. The main results of this study showed that all the problematic values (e.g., histamine) were under the critical limit (1 g/L), although the organic samples resulted in a significantly higher level than the control wines. The glycerin content correlated with the literature values, since it is well known that the glycerin-pyruvic acid transformation results in a 6–10 g/L concentration.
Medium chain fatty acids are candidates of partial sulphur dioxide replacement in wine, as a solution to the growing consumer concerns about chemical additives. In botrytised sweet wine specialties, large amount of sulphur dioxide addition is one of the effective practices to stop alcoholic fermentation. Increasing medium chain fatty acid levels up to 80 mg l-1 was tested as a sole inhibitor on solid agar surface. S. bacillaris seemed to be the most sensitive, S. cerevsisiae and S. bayanus were more tolerant, while Z. bailii showed the highest tolerance. Then, increasing medium chain fatty acid levels up to 40 mg l-1 combined with 100 mg l-1 sulphur dioxide was introduced into a Tokaj Essence under refermentation. After 56 days, the highest dosage had pronounced effect on the yeast population, but the refermentation was not inhibited completely. Medium chain fatty acids have varying inhibitory effect on botrytised wine-related yeasts, moreover, it could be used effectively in media with high ethanol content, unlike Tokaj Essence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.