Tumors are composed of abnormally transformed cell types and tissues that differ from normal tissues in their genetic and epigenetic makeup, metabolism, and immunology. Molecular compounds that modulate the immune response against neoplasms offer promising new strategies to combat cancer. Inhibitors targeting the indoleamine-2,3-dioxygenase 1 enzyme (IDO1) represent one of the most potent therapeutic opportunities to inhibit tumor growth. Herein, we assess the biochemical role of IDO1 in tumor metabolism and immune surveillance, and review current diagnostic and therapeutic approaches that are intended to increase the effectiveness of immunotherapies against highly aggressive and difficult-to-treat IDO-expressing cancers.
Indoleamine 2,3-dioxygenase (IDO), an enzyme which is activated by pro-inflammatory cytokines, has been suggested as a potential link between neuroinflammatory processes in neurodegenerative diseases (like Alzheimer's disease) and depression. The present study aimed to determine whether neuroinflammation-induced increased IDO levels in the mammalian brain will lead to depressive-like behavior. Neuroinflammation was initiated in mice by a single intracerebroventricular injection of lipopolysaccharide (LPS). Cerebral inflammation was monitored 1, 2, 3 and 4 days after the injection with small-animal positron emission tomography (PET) using the inflammatory marker [(11)C]-PK11195. In the presence or absence of systemically applied 1-methyl-tryptophan (1-MT), a competitive IDO-inhibitor, we assessed the development of depressive-like behavioral symptoms in parallel with IDO expression and activity. The PK11195 PET signal reached a highly significant peak 3 days after LPS injection, while these animals displayed a significant increase of depressive-like behavior in the forced swim test compared to vehicle-injected animals. These findings were paralleled by a significant increase of IDO in the brainstem, and an increased kynurenine/tryptophan ratio in the serum. Moreover, we report here for the first time, that inhibition of IDO by 1-MT in centrally induced neuroinflammation under experimental conditions can prevent the development of depressive-like behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.