Regular screening of point mutations is of importance to cancer management and treatment selection. Although techniques like next-generation sequencing and digital polymerase chain reaction (PCR) are available, these are lacking in speed, simplicity, and cost-effectiveness. The development of alternative methods that can detect the extremely low concentrations of the target mutation in a fast and cost-effective way presents an analytical and technological challenge. Here, an approach is presented where for the first time an allele-specific PCR (AS-PCR) is combined with a newly developed high fundamental frequency quartz crystal microbalance array as biosensor for the amplification and detection, respectively, of cancer point mutations. Increased sensitivity, compared to fluorescence detection of the AS-PCR amplicons, is achieved through energy dissipation measurement of acoustically “lossy” liposomes binding to surface-anchored dsDNA targets. The method, applied to the screening of BRAF V600E and KRAS G12D mutations in spiked-in samples, was shown to be able to detect 1 mutant copy of genomic DNA in an excess of 104 wild-type molecules, that is, with a mutant allele frequency (MAF) of 0.01%. Moreover, validation of tissue and plasma samples obtained from melanoma, colorectal, and lung cancer patients showed excellent agreement with Sanger sequencing and ddPCR; remarkably, the efficiency of this AS-PCR/acoustic methodology to detect mutations in real samples was demonstrated to be below 1% MAF. The combined high sensitivity and technology-readiness level of the methodology, together with the ability for multiple sample analysis (24 array biochip), cost-effectiveness, and compatibility with routine workflow, make this approach a promising tool for implementation in clinical oncology labs for tissue and liquid biopsy.
Regular screening of cancerous point mutations is of importance to cancer management and treatment selection. Although excellent techniques like next-generation sequencing and droplet digital PCR are available, these are still lacking in speed, simplicity and cost-effectiveness. Here a new approach is presented where allele-specific PCR (AS-PCR) is combined with a novel High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) array biosensor for the amplification and detection, respectively, of cancer point mutations. For the proof-of-concept, the method was applied to the screening of the BRAF V600E and KRAS G12D mutations in spiked-in and clinical samples. Regarding the BRAF target, an analytical sensitivity of 0.01%, i.e., detection of 1 mutant copy of genomic DNA in an excess of 104 wild type molecules, was demonstrated; moreover, quantitative results during KRAS detection were obtained when an optimized assay was employed with a sensitivity of 0.05%. The assays were validated using tissue and plasma samples obtained from melanoma, colorectal and lung cancer patients. Results are in full agreement with Sanger sequencing and droplet digital PCR, demonstrating efficient detection of BRAF and KRAS mutations in samples having an allele frequency below 1%. The high sensitivity and technology-readiness level of the methodology, together with the ability for multiple sample analysis (24 array biochip), cost-effectiveness and compatibility with routine work-flow, hold promise for the implementation of this AS-PCR/acoustic methodology in clinical oncology as a tool for tissue and liquid biopsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.