Abstract:The idea to use a cost-effective pneumatic padding for sensing of physical interaction between a user and wearable rehabilitation robots is not new, but until now there has not been any practical relevant realization. In this paper, we present a novel method to estimate physical human-robot interaction using a pneumatic padding based on artificial neural networks (ANNs). This estimation can serve as rough indicator of applied forces/torques by the user and can be applied for visual feedback about the user's participation or as additional information for interaction controllers. Unlike common mostly very expensive 6-axis force/torque sensors (FTS), the proposed sensor system can be easily integrated in the design of physical human-robot interfaces of rehabilitation robots and adapts itself to the shape of the individual patient's extremity by pressure changing in pneumatic chambers, in order to provide a safe physical interaction with high user's comfort. This paper describes a concept of using ANNs for estimation of interaction forces/torques based on pressure variations of eight customized air-pad chambers. The ANNs were trained one-time offline using signals of a high precision FTS which is also used as reference sensor for experimental validation. Experiments with three different subjects confirm the functionality of the concept and the estimation algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.