We present results from a study of the 6-to 12-Hz force tremor in relation to motor unit (MU) firing synchrony. Our experimental observations from 32 subjects, 321 contractions, and 427 recorded MUs reveal that tremor is accompanied by corresponding, in-phase MU rhythms that are additional to the ones at the MU intrinsic firing rates. This rhythmical synchrony is widespread and has a uniform strength that ranges from near zero to very large (MU/MU coherence > 0.50) in different contractions. Both the synchrony and the tremor are suppressed during ischemia, and this strongly suggests an involvement of spindle feedback in their generation. Furthermore, in the presence of substantial synchrony, the tremor enhancement, relative to the minimal tremor of ischemia, reflects the strength of the synchrony. Theoretical considerations based on these observations indicate that the muscle force signal is expected to show 1) frequency components in the band of the firing rates of the last-recruited, large MUs, and 2) because of the synchronized MU rhythms, an additional, distinct component with a size reflecting the strength of synchrony. Furthermore, synchronized MU rhythms, with frequencies in the 6- to 12-Hz range, are expected to arise from self-oscillations in the monosynaptic stretch reflex loop, due primarily to the associated muscle delay (several tens of milliseconds). Our results therefore reveal the parallel action of two tremor mechanisms, one of which involves MU synchrony probably caused by loop action. Clearly, the results on the synchrony and its impact also apply to other possible generators of tremor synchrony, including supraspinal ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.