Abstract-In this paper, we present the computational tools and a hardware prototype for 3D face recognition. Full automation is provided through the use of advanced multistage alignment algorithms, resilience to facial expressions by employing a deformable model framework, and invariance to 3D capture devices through suitable preprocessing steps. In addition, scalability in both time and space is achieved by converting 3D facial scans into compact metadata. We present our results on the largest known, and now publicly available, Face Recognition Grand Challenge 3D facial database consisting of several thousand scans. To the best of our knowledge, this is the highest performance reported on the FRGC v2 database for the 3D modality.Index Terms-Face and gesture recognition, information search and retrieval.
In this paper we perform an empirical evaluation of supervised learning on highdimensional data.We evaluate performance on three metrics: accuracy, AUC, and squared loss and study the effect of increasing dimensionality on the performance of the learning algorithms. Our findings are consistent with previous studies for problems of relatively low dimension, but suggest that as dimensionality increases the relative performance of the learning algorithms changes. To our surprise, the method that performs consistently well across all dimensions is random forests, followed by neural nets, boosted trees, and SVMs.
Abstract. Many modern multiclass and multilabel problems are characterized by increasingly large output spaces. For these problems, label embeddings have been shown to be a useful primitive that can improve computational and statistical efficiency. In this work we utilize a correspondence between rank constrained estimation and low dimensional label embeddings that uncovers a fast label embedding algorithm which works in both the multiclass and multilabel settings. The result is a randomized algorithm whose running time is exponentially faster than naive algorithms. We demonstrate our techniques on two large-scale public datasets, from the Large Scale Hierarchical Text Challenge and the Open Directory Project, where we obtain state of the art results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.