MicroRNAs (miRNAs) are small endogenous RNA molecules that regulate gene expression through mRNA degradation and/or translation repression, affecting many biological processes. DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to miRNA target prediction/functional analysis, and it is being widely used from the scientific community, since its initial launch in 2009. DIANA-microT v5.0, the new version of the microT server, has been significantly enhanced with an improved target prediction algorithm, DIANA-microT-CDS. It has been updated to incorporate miRBase version 18 and Ensembl version 69. The in silico-predicted miRNA–gene interactions in Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 million in total. The web server was completely redesigned, to host a series of sophisticated workflows, which can be used directly from the on-line web interface, enabling users without the necessary bioinformatics infrastructure to perform advanced multi-step functional miRNA analyses. For instance, one available pipeline performs miRNA target prediction using different thresholds and meta-analysis statistics, followed by pathway enrichment analysis. DIANA-microT web server v5.0 also supports a complete integration with the Taverna Workflow Management System (WMS), using the in-house developed DIANA-Taverna Plug-in. This plug-in provides ready-to-use modules for miRNA target prediction and functional analysis, which can be used to form advanced high-throughput analysis pipelines.
MicroRNAs (miRNAs) are key regulators of diverse biological processes and their functional analysis has been deemed central in many research pipelines. The new version of DIANA-miRPath web server was redesigned from the ground-up. The user of DNA Intelligent Analysis (DIANA) DIANA-miRPath v2.0 can now utilize miRNA targets predicted with high accuracy based on DIANA-microT-CDS and/or experimentally verified targets from TarBase v6; combine results with merging and meta-analysis algorithms; perform hierarchical clustering of miRNAs and pathways based on their interaction levels; as well as elaborate sophisticated visualizations, such as dendrograms or miRNA versus pathway heat maps, from an intuitive and easy to use web interface. New modules enable DIANA-miRPath server to provide information regarding pathogenic single nucleotide polymorphisms (SNPs) in miRNA target sites (SNPs module) or to annotate all the predicted and experimentally validated miRNA targets in a selected molecular pathway (Reverse Search module). DIANA-miRPath v2.0 is an efficient and yet easy to use tool that can be incorporated successfully into miRNA-related analysis pipelines. It provides for the first time a series of highly specific tools for miRNA-targeted pathway analysis via a web interface and can be accessed at http://www.microrna.gr/miRPathv2.
Recently, the attention of the research community has been focused on long non-coding RNAs (lncRNAs) and their physiological/pathological implications. As the number of experiments increase in a rapid rate and transcriptional units are better annotated, databases indexing lncRNA properties and function gradually become essential tools to this process. Aim of DIANA-LncBase (www.microrna.gr/LncBase) is to reinforce researchers’ attempts and unravel microRNA (miRNA)–lncRNA putative functional interactions. This study provides, for the first time, a comprehensive annotation of miRNA targets on lncRNAs. DIANA-LncBase hosts transcriptome-wide experimentally verified and computationally predicted miRNA recognition elements (MREs) on human and mouse lncRNAs. The analysis performed includes an integration of most of the available lncRNA resources, relevant high-throughput HITS-CLIP and PAR-CLIP experimental data as well as state-of-the-art in silico target predictions. The experimentally supported entries available in DIANA-LncBase correspond to >5000 interactions, while the computationally predicted interactions exceed 10 million. DIANA-LncBase hosts detailed information for each miRNA–lncRNA pair, such as external links, graphic plots of transcripts’ genomic location, representation of the binding sites, lncRNA tissue expression as well as MREs conservation and prediction scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.